We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
感谢大佬的开源工作!我用的IAO下面的量化方法,在coco128的实验结果是map=0.65(因为coco128的数据集很小,所以前期在该数据集上验证以下),但是在用IAO中的量化算子替换掉原模型中的相应算子之后(参考大佬的代码,我把v5中的所有concat层以及add层都给量化了),有以下几个问题: 1、速度变慢(这个可以理解,因为原模型中是混合精度训练,我给全部改成了fp32的),但是主要是NMS处理的时间不知道为什么变得很长,很容易出发NMS模块中的超时设置,进而导致break; 2、精度下降很大,即便我用了原模型的预训练权值,但是大部分时间会在0.4左右就上下波动,而且这种波动非常剧烈,峰值在0.5,最低值可能会降到0.2;不知道这种下降幅度正不正常?
The text was updated successfully, but these errors were encountered:
1、量化训练会变慢的,2~3倍挺正常,NMS不清楚; 2、加载浮点模型,多开几个实验试试:相比浮点初始学习率X0.1,X0.01,X0.001,让波动小一点,但还是会比浮点大,正常; 3、先用默认的量化配置且head不要量化试试,看看掉多少。
Sorry, something went wrong.
No branches or pull requests
感谢大佬的开源工作!我用的IAO下面的量化方法,在coco128的实验结果是map=0.65(因为coco128的数据集很小,所以前期在该数据集上验证以下),但是在用IAO中的量化算子替换掉原模型中的相应算子之后(参考大佬的代码,我把v5中的所有concat层以及add层都给量化了),有以下几个问题:
1、速度变慢(这个可以理解,因为原模型中是混合精度训练,我给全部改成了fp32的),但是主要是NMS处理的时间不知道为什么变得很长,很容易出发NMS模块中的超时设置,进而导致break;
2、精度下降很大,即便我用了原模型的预训练权值,但是大部分时间会在0.4左右就上下波动,而且这种波动非常剧烈,峰值在0.5,最低值可能会降到0.2;不知道这种下降幅度正不正常?
The text was updated successfully, but these errors were encountered: