
KICKSTARTER 2016

EXPERIMENTER’S KIT

Bela is a project of the Augmented
Instruments Laboratory, Centre for Digital

Music, Queen Mary University of London. Bela
is open source and licensed under LGPL.

bela.io

1

We are thrilled to deliver your Bela Experimenter Kit, the reward
you selected during our Kickstarter campaign in March 2016. Over
the past few months we have been building, developing,
documenting and improving this platform, and we are proud to
present the latest version of Bela to our Kickstarter backers.

In this kit you will find a wide array of sensors and add-ons, as well
as everything you need to make projects with Bela (see a complete
list of what’s included on the next pages). In this book you will find
out how to get up and running with the hardware and running
your code. We have also included a wide array of example projects
and diagrams to get you started.

We encourage you to join our Forum (forum.bela.io), where you
can get support, ask questions, and show off what you’ve built. You
can also find all of our code and examples on Github
(bela.io/code).

We hope you enjoy Bela as much as we’ve enjoyed making it.

Your friends at
The Augmented Instruments Laboratory
(Andrew, Liam, Astrid, Giulio, Laurel, Chris & Robert)

Dear Kickstarter Backer,

2

13

1

7

8

2

6

15

14
5

11

4

18

3

3

12

17

16

9

1. 8 Ω Speaker

2. Force sensing resistor

3. Tactile buttons (2)

4. LEDs (2 x red/green

/blue/yellow, 1 x RGB)

5. Potentiometers (2)

6. Resistors

(5 x 10KΩ, 10 x 220Ω)

7. Piezos (2)

8. Light dependent resistor

9. Accelerometer

10. Bela cape

11. BeagleBone Black

12. Breadboard

13. Audio adapter cables (2)

14. Mini jack cable

15. Barrel jack cable

16. USB power cable

17. Jumper wires

18. SD card + adapter

WHAT’S INSIDE:

*Not pictured: acrylic base plate, screws, spacers.
Please not that due to availability your parts might look a

little different from the illustrations.

10

4

Assembling Bela
The first thing we need to do is
assemble the Bela kit. Find your
Bela cape, your BeagleBone, your
acrylic base plate, your screws and
spacers, and your breadboard.

1. Don’t put your Bela cape on the
BeagleBone straight away - this
makes things really hard later on.
We’ll do that last.

2. Find the 4 flat head screws and
the 4 hexagonal metal spacers. Put
the screws up through the bottom
of the acrylic plate and affix the
spacers on top.

3. Then, locate the 4 round head
screws. Place your BeagleBone on
top of the spacers, aligning the
holes, and attach it to the base
using the screws.

4. Next, put the Bela cape in place.
Line up the pin headers and holes
carefully and ease the cape in a
little at a time.

5. Finally, affix your breadboard.
Peel the adhesive off the back and
affix to the right side of the acrylic
plate beside your Bela setup. Now
all you need to do is insert the SD
card, and you’re ready to go!

bela.io

Put this on last!

VInsert SD card
here

Flat head screws

Round head screws

5

1. Power it up.
Now that your Bela is assembled, attach one audio adapter cable
to your audio out pins (see bela.io/belaDiagram if you can’t find it)
and plug in your headphones.

Then, plug the USB cable into Bela and connect to your laptop.
Once iBela finished booting (this usually takes a couple of minutes)
access the IP address of your board in a browser (we recommned
using Google Chrome) by going to this address (the IDE will load
automatically):

http://192.168.7.2

2. Open the example.
Open the tab on the right and click the Examples tab (look for this
symbol:) and choose the project 01-basics -> sinetone.

3. Run the code.
Click the Run button in the bottom left . It will turn yellow while
it’s building (this may take a minute on the first go), and then turns
green when it’s working. If you hear a sine tone, congratulations!
Everything is working and you’re ready to build some example
projects.

Running your first sketch
A sine tone is audio’s Hello World.

V

plug in
headphones

here

6

One of Bela’s unique features is an IDE (Integrated Development
Environment) that you access through a browser window. No
internet connection is required; the IDE runs on the board, we just
use the browser to access it. (We recommend using the latest
version of Chrome right now; we’re working on cross browser
compatability but that’s still in progress, and we can’t guarantee
functionality in other browsers.) To access the IDE, go to:

http://192.168.7.2

We will briefly explain the useful stuff in the tabs, but first, a couple
of features for your enjoyment:

Your code is automatically saved. Every time you stop typing, your
work is saved to the board. No need for ctrl+s, and when you open up
another project your last one is saved exactly as you left it.

Constant syntax checking. At the right of the toolbar you’ll see a
status indicator: for ok, for in progress, and for error. These
indcate the stauts of your code, which is checked every time you
stop typing, and will tell you if your code is ok to run, or if there’s a
problem with it. (If there is a problem, a red X in the left

A toolbar integrated into your workflow. The toolbar and its
functionality - running/stopping your code, status, and so on - is in
the middle of the screen, so you don’t have to mouse up to the top
of the window to do the things you need to do most often.

Download your project, any time. By clicking the Download button,
your current project is saved to your computer as a zip file. (We
recommend downloading your code regularly in case of SD card
failures).

A tour of the IDE
Write code, right in your browser.

7

We have loaded Bela with lots of example projects. which provide
templates and techniques for programming Bela with C++. There are
also Pd examples, and although you can’t edit Pd patches in the IDE,
you can click on them and they will open an image in the editor,
showing you which objects are used and how the patch works.

Examples

Project explorer
This tab allows you to manage the files of your current project (make
a new file, upload/download/rename/delete files) and make new
projects. It also lists the files contained in your current project, and you
can open these files in the editor by clicking on the file name. Further,
you can initialise a Git repo on the board for your project, and make
commits and send Git commands straight from the interface.

Settings
The settings tab provides an easy way to adjust the settings for your
project, from basic things like headphone level to advanced settings
like make parameters, command line arguments, and audio block
size. You can also download all your projects with one click.

Pin Diagram
The interactive pin diagram highlights active pins and connectors,
and you can see what they are by mousing over them. No more
guesswork, no more cheat sheets.

Documentation
The Bela API uses three basic functions - setup(), render() and
cleanup() - and you can find explanations of these, plus the functions
used for things like addressing analog and digital pins. The Full
Documentation button opens our complete documentation in a
new browser tab.

8

As well as C++, Bela can also run patches created with Pure Data.

Pure Data, or Pd, is a graphical programming language. We’ll
describe how to run patches with Libpd here, but you can also
use Enzien Audio’s Heavy audio compiler (see enzienaudio.com
for details). Libpd is a GUI-less version of Pd which allows you to
embed Pd patches into other programs. Libpd runs all of Pd
Vanilla objects, almost all of which are supported on Bela. Here’s
how to use it:

1. Download Pd Vanilla (http://puredata.info/downloads) and
make an example patch, saving it as _main.pd.

2. In the in-browser IDE, go to File Explorer -> New Project

3. A dialogue box will ask you if you want to create a C++ or Pure
Data project. Choose Pure Data, and give your project a name.

4. Now you can drag and drop your Pd patch into the browser and
click the run button to run it!

Visit our Github wiki to read more about running Pd patches on
Bela, and how to use Pd to address analog and digital pins.

Getting started with Pd
Bela: Not just for C++ anymore.

Pd

9

How it works:
This example brings together digital input and digital output. The
program will read a button and turn the LED on and off according
to the state of the button.

Code:
Before using the digital pins we need to set whether they are input
or output. This is done via pinMode(context, 0, P8_08, INPUT);

Note that there are two ways of specifying the digital pin: using the
GPIO label (e.g. P8_07), or using the digital IO index (e.g. 0)

Using a switch
Found in Examples -> 02-Digital -> digital-input
Using a digital switch to turn an LED on and off

10

How it works:
The LED is set to blink on and off by setting the digital pin HIGH
and LOW at regular intervals in render()

Code:
In setup() the pin mode must be set to output mode via
pinMode(). For example: pinMode(context, 0, P8_07, OUTPUT). In
render() the output of the digital pins is set by digitalWrite(). For
example: digitalWrite(context, n, P8_07, status) where status can
be equal to either HIGH or LOW. When set HIGH the pin will give
3.3V, when set to LOW 0V.

Blinking an LED
Found in Examples -> 02-Digital -> digital-output
Blinking an LED on and off with digital pins.

11

How it works:
This sketch produces a sine tone. Its frequency and amplitude are
modulated by data received on the analog input pins.

Code:
Before looping through each audio frame, we declare a value for
the frequency and amplitude of our sine tone. We adjust these
values by taking in data from analog sensors (in this case,
potentiometers) with analogRead().

The important thing to notice is that audio is sampled twice as
often as analog data. The audio sampling rate is 44.1kHz (44100
frames per second) and the analog sampling rate is 22.05kHz
(22050 frames per second).

Using Potentiometers
Found in Examples -> 03-Analog -> analog-input
Controlling analog inputs using potentiometers

12

How it works:
Each analog pin provides an output between 0 and 4V. If we vary
this voltage up and down smoothly, we can fade LEDs
accordingly.

Code:
The output on each pin is set with analogWrite() within the for
loop that cycles through the analog output channels. This needs
to be provided with arguments as follows analogWrite(context, n,
channel, out). Channel is where the you give the address of the
analog output pin (in this case we cycle through each pin address
in the for loop), out is the variable that holds the desired output (in
this case set by the sine wave) and n is the frame number (given
by the outer for loop).

Fading LEDs
Found in Examples -> 03-Analog -> analog-output
Using analog output to control the fade of LEDs

13

How it works:
LEDs light up sequentially with the level of the music, indicating its
volume. Connect an audio adapter to the Audio In pins and use
the audio cable to connect the adapter and your music source
(such as a laptop).

Code:
The code performs peak detection on the audio input and lights
the LEDs once the amplitude of the input signal passes a certain
threshold. Each LED has its own threshold, in steps of 3dB. All
digital pins are toggled on and off when the amplitude passes the
threshold for that LED. The LEDs below the current peak value
always remain lit to create a classic amplitude peak meter. The
audio input is passed through to the output so you can listen as
you watch the light show. (You can use any colours you like, and it’s
okay if you don’t put in all 8 LEDs.)

Level Meter
Found in Examples -> 02-Digital -> level-meter
Visualising music with LEDs

14

One of the Bela IDE’s most exciting features is an in-browser
oscilloscope. This allows you to see what the signal from your
audio code or sensor is doing (or if there’s any signal at all). We love
oscilloscopes but they’re also expensive, heavy, and can be hard to
set up, so we built one that you can use in your browser window.

Build a two-potentiometer setup as in the diagram below, and
open the example 03-Analog -> scope-analog. This sketch involve
two potentiometers, one which controls the signal’s frequency,
and the other which controls the signal’s amplitude.

Once you have the sketch running, open up the oscilloscope by
clicking the Scope button in the toolbar ().

The oscilloscope
See what your signal is doing, right in your browser.

15

What we’re looking at

On the left is a capture of the
scope output (you can make a
screen cap with the Save Image
button). You can see the three
lines change if you adjust the
potentiometers.

In an oscilloscope, the horizontal
axis is time and the vertical axis is

signal amplitude. In our example, the potentiometers are
the blue (pot 1) and green (pot 2) lines, and the red line is the
generated sine wave. As we turn the potentiometers the
green and blue lines move with their values, and affect the
generated sine wave.

Here’s how to plot your output to the oscilloscope:

1. Make a scope object.
At the top of the sketch we declare a scope object, and in
setup() we determine how many inputs it will have (in our
case, 3) and the sample rate at which the data should be
logged.

2. Give the scope object signal to plot.
Our three signals - the sine wave, pot 1, and pot 2 - are in the
render() function as out, gIn1, and gIn2. We log these to the
scope with scope.log(out, gIn1, gIn2) to produce our visual
output.

Explore the scope controls by adjusting features such as the
colour of the lines representing each signal, as well as the
horizontal offset and the y-axis amplitude.

16

Using light as a controller
Found in Examples -> 06-sensors -> LDR
Control the volume of white noise with an LDR

How it works:
A light dependent resistor changes its resistance depend-
ing on how much light hits it. We can use this to move the
amplitude of the white noise up or down.

Code:
In order to use the LDR as a volume control we need to set
the thresholds of the resistor for ambient light, maximum
light, and maximum darkness. There is a chunk of code in
render(); uncomment it and run the sketch, and wave a
hand over the LDR and shine a torch on it. The LDR values
will be printed in the console; make note of the minimum
and maximum values.

Then re-comment out that chunk, and update the gLight
and gDark variables with the minimum and maximum
values. Re-run the sketch, and control the noise by waving
a hand over the LDR.

17

How it works:
An audio file is loaded into a buffer, and plays whenever the piezo
detects a strike.

Code:
Getting coherent signal from the piezo element requires some
signal conditioning. This is explained in detail in the project file
comments.

In this example the sample is loaded into a buffer and then read
with a read pointer, a variable that keeps track of where we are in
the buffer. The read pointer is incremented every time and output
sample is needed, advancing its position.

Found in Examples -> 04-Audio -> sample-piezo-trigger
Trigger a WAV file sample with a piezo strike

Piezo trigger

18

How it works:
Changing the resistance of the FSR by pressing on it changes the
variables controlling the sound model, resulting in different duck
sounds.

Code:
This is another example of a voltage divider circuit. As you press
the FSR its resistance decreases, and we measure the change in
voltage at the analog input. In the PureData patch we then
calculate how much this signal changes and use this to drive the
sound model. This gives the sound model a much more realistic
response when the FSR is squeezed. Open up the patch in the
IDE to find out more details about the sound model. Try removing
the differential and listen to how it sounds.

Rubber duckie
Found in Examples -> 08-PureData -> rubberDuckie
Control a squeaky sound model with an FSR

19

How it works:
This project is a instrument that uses an accelerometer to sense
movement. The movement of the accelerometer is used to excite
a physical model of 9 strings.

Code:
As you tilt the accelerometer along one axis it will move a virtual
mass across the strings, plucking each string as it passes. As well as
tilting it you can try shaking it back and forth which will create a
strumming effect like on a guitar. This shows the great variety of
gestures that you can get from a simple accelerometer and also
shows some techniques for using this sensor to control sound
synthesis. Note that the panning of the strings changes as you
move the sensor, high strings are in one channel and low strings in
the other.

Air Harp
Found in Examples -> 10-Instruments -> air-harp
Hear plucked strings by moving an accelerometer.

20

We have included an external 8Ω speaker in this kit so you can amplify
the sounds you make with Bela. However, using this speaker requires a
bit of a different setup.

To attach the speaker to Bela, attach the 2-pin connector to either one of
the speaker headers (see bela.io/belaDiagram if you can’t find it).

Next, you’ll need an external power source. This is required because the
speaker amplifiers require a higher current to work. We use external
mobile phone batteries - these are inexpensive, widely available, and
rechargable, but you could run Bela off any 5V battery source. This also
means that you can run Bela without a laptop.

Once you’re finished programming, go to Settings -> Run project on
boot, and choose the sketch you’d like to run when Bela starts up. Then,
detach Bela from the computer, attach to a battery via the 5V jack, and
power it up - now Bela can be embedded almost anywhere, and can
power its own speaker.

Using an external speaker
When headphones just aren’t enough.

V

external
battery

barrel
cable

5V supply

speaker

What’s in this guide Before you go ...
Here’s some useful links.

Bela code base on Github:

bela.io/code

Bela forum:

forum.bela.io

Our Getting Started guide:

bela.io/gettingStarted

An interactive Bela pin diagram:

bela.io/belaDiagram

IDE address:

http://192.168.7.2

bela.io

Introduction 1
Parts list 2
Assembling Bela 4
Running your first sketch 5
A tour of the IDE 6
Getting started with Pd 8
Using a switch 9
Blinking an LED 10
Using potentiometers 11
Fading LEDs 12
Level meter 13
The oscilloscope 14
Using light as a controller 16
Piezo trigger 17
Rubber duckie 18
Air Harp 19
Using an external speaker 20

KICKSTARTER 2016

EXPERIMENTER’S KIT

Bela is a project of the Augmented
Instruments Laboratory, Centre for Digital

Music, Queen Mary University of London. Bela
is open source and licensed under LGPL.

bela.io

