Skip to content

Latest commit

 

History

History
187 lines (180 loc) · 16 KB

开源框架.MD

File metadata and controls

187 lines (180 loc) · 16 KB

Tool and Library

推理框架

工具描述 链接
FlexFlow:模型部署推理框架 https://github.com/flexflow/FlexFlow
Medusa:针对采样解码的推理加速框架,可以和其他策略结合 https://github.com/FasterDecoding/Medusa
FlexGen: LLM推理 CPU Offload计算架构 https://github.com/FMInference/FlexGen
VLLM:超高速推理框架Vicuna,Arena背后的无名英雄,比HF快24倍,支持很多基座模型 https://github.com/vllm-project/vllm
Streamingllm: 新注意力池Attention方案,无需微调拓展模型推理长度,同时为推理提速 https://github.com/mit-han-lab/streaming-llm
llama2.c: llama2 纯C语言的推理框架 https://github.com/karpathy/llama2.c
Guidance: 大模型推理控制框架,适配各类interleave生成 https://github.com/guidance-ai/guidance
SGLang: prompt cache的告诉推理框架 https://github.com/sgl-project/sglang

指令微调,预训练,rlhf框架

工具描述 链接
LoRA:Low-Rank指令微调方案 https://github.com/tloen/alpaca-lora
peft:parameter-efficient prompt tunnging工具集 https://github.com/huggingface/peft
RL4LMs:AllenAI的RL工具 https://github.com/allenai/RL4LMs
RLLTE:港大,大疆等联合开源RLLTE开源学习框架 https://github.com/RLE-Foundation/rllte
trl:基于Transformer的强化训练框架 https://github.com/lvwerra/trl
trlx:分布式训练trl https://github.com/CarperAI/trlx
北大开源河狸项目可复现RLHF,支持多数LLM,提供RLHF数据 https://github.com/PKU-Alignment/safe-rlhf
RL4LMs:AllenAI的RL工具 https://github.com/allenai/RL4LMs
LMFlow:港科大实验室开源的大模型微调框架,支持以上多数开源模型的指令微调和RLHF https://github.com/OptimalScale/LMFlow
hugNLP:基于Huggingface开发继承Prompt技术,预训练和是指输入等多种方案 https://github.com/wjn1996/HugNLP
Deepspeed:针对RL训练和推理的整合优化 https://github.com/microsoft/DeepSpeed
Uerpy:预训练框架支持lm,mlm,unilm等 https://github.com/dbiir/UER-py
TecentPretrain: Uerpy的重构版本支持llama预训练 https://github.com/Tencent/TencentPretrain/tree/main
lamini: 整合指令数据生成,SFT,RLHF的工具库 https://github.com/lamini-ai/lamini/
Chain-of-thought-hub:模型推理能力评估平台 https://github.com/FranxYao/chain-of-thought-hub
EasyEdit:浙大开源支持多种模型,多种方案的模型知识精准编辑器 https://github.com/zjunlp/EasyEdit
OpenDelta:集成了各种增量微调方案的开源实现 https://github.com/thunlp/OpenDelta
Megablocks:MOE训练框架 https://github.com/stanford-futuredata/megablocks
Tutel:MOE训练框架 https://github.com/microsoft/tutel
LongLora: 长文本微调框架 https://github.com/dvlab-research/LongLoRA
LlamaGym:在线RL微调框架 https://github.com/KhoomeiK/LlamaGym
Megatron-LM:主流LLM预训练框架 https://github.com/NVIDIA/Megatron-LM
TradingGym:参考openai gym的股票交易强化学习模拟器 https://github.com/astrologos/tradinggym
TradeMaster: 量化交易RL训练框架 https://github.com/TradeMaster-NTU/TradeMaster
REFT:大模型表征微调框架 https://github.com/stanfordnlp/pyreft

Auto/Multi Agent

工具描述 链接
AutoGen:微软开源多Agent顶层框架 https://github.com/microsoft/autogen
CrewAI: 比chatDev流程定义更灵活的多智能体框架 https://github.com/joaomdmoura/CrewAI
ChatDev: 面壁智能开源多智能体协作的虚拟软件公司 https://github.com/OpenBMB/ChatDev
Generative Agents:斯坦福AI小镇的开源代码 https://github.com/joonspk-research/generative_agents
BabyAGI:自执行LLM Agent https://github.com/yoheinakajima/babyagi
AutoGPT:自执行LLM Agent https://github.com/Torantulino/Auto-GPT
AutoGPT-Plugins:提供众多Auo-GPT官方和第三方的插件 https://github.com/Significant-Gravitas/Auto-GPT-Plugins
XAgent: 面壁智能开源双循环AutoGPT https://github.com/OpenBMB/XAgent
MetaGPT: 覆盖软件公司全生命流程,例如产品经理等各个职业的AutoGPT https://github.com/geekan/MetaGPT
ResearchGPT: 论文写作领域的AutoGPT,融合论文拆解+网络爬虫 https://github.com/assafelovic/gpt-researcher
MiniAGI:自执行LLM Agent https://github.com/muellerberndt/mini-agi
AL Legion: 自执行LLM Agent https://github.com/eumemic/ai-legion
AgentVerse:多模型交互环境 https://github.com/OpenBMB/AgentVerse
AgentSims: 给定一个社会环境,评估LLM作为智能体的预定任务目标完成能力的沙盒环境 https://github.com/py499372727/AgentSims/
GPTRPG:RPG环境 AI Agent游戏化 https://github.com/dzoba/gptrpg
GPTeam:多智能体交互 https://github.com/101dotxyz/GPTeam
GPTEngineer:自动工具构建和代码生成 https://github.com/AntonOsika/gpt-engineer
WorkGPT:类似AutoGPT https://github.com/team-openpm/workgpt
AI-Town: 虚拟世界模拟器 https://github.com/a16z-infra/ai-town
webarena:网络拟真环境,可用于自主智能体的测试,支持在线购物,论坛,代码仓库etc https://github.com/web-arena-x/webarena
MiniWoB++:100+web交互操作的拟真环境 https://github.com/Farama-Foundation/miniwob-plusplus
VIRL:虚拟世界模拟器 https://github.com/VIRL-Platform/VIRL
AgentK: 多智能体协作,自我进化,自主生成新智能体的框架 https://github.com/mikekelly/AgentK/tree/master
Swarm:OpenAi开源的多智能体框架,包括Agent路由,个性化Agent定制 https://github.com/openai/swarm
TinyGroup: 多角色模拟框架 https://github.com/microsoft/TinyTroupe?tab=readme-ov-file

Agent工具框架类

工具描述 链接
OpenAgents: 开源版ChatGPT-Plus搭建框架 https://github.com/xlang-ai/OpenAgents
LangGraph:白盒话,可循环基于有向无环图的Agent工作流构建框架 https://langchain-ai.github.io/langgraph/
langchain:LLM Agent框架 https://github.com/hwchase17/langchain
llama index:LLM Agent框架 https://github.com/jerryjliu/llama_index
Langroid: LLM Agent框架 https://github.com/langroid/langroid
Ragas: 评估检索增强LLM效果的框架,基于大模型prompt评估事实性,召回相关性,召回内容质量,回答相关性等 https://github.com/explodinggradients/ragas#fire-quickstart
fastRAG:检索框架,包括多索引检索,KG构建等基础功能 https://github.com/IntelLabs/fastRAG/tree/main
langflow:把langchain等agent组件做成了可拖拽式的UI https://github.com/logspace-ai/langflow
PhiData:把工具调用抽象成function call的Agent框架 https://github.com/phidatahq/phidata
Haystack: LLM Agent 框架,pipeline的设计模式个人感觉比langchain更灵活更简洁 https://github.com/deepset-ai/haystack
EdgeChain: 通过Jsonnet配置文件实现LLM Agent https://github.com/arakoodev/EdgeChains/tree/main
semantic-kernel:整合大模型和编程语言的SDK https://github.com/microsoft/semantic-kernel
BMTTools: 清华出品多工具调用开源库,提供微调数据和评估ToolBench https://github.com/OpenBMB/BMTools
Jarvis: 大模型调用小模型框架,给小模型一个未来! https://github.com/search?q=jarvis
LLM-ToolMaker:让LLM自己制造Agent https://github.com/ctlllll/LLM-ToolMaker
Gorilla: LLM调用大量API https://github.com/ShishirPatil/gorilla
Open-Interpreter:命令行聊天框架 https://github.com/KillianLucas/open-interpreter
AnythingLLM: langchain推出的支持本地部署开源模型的框架 https://github.com/Mintplex-Labs/anything-llm
PromptFlow:微软推出的大模型应用框架 https://github.com/microsoft/promptflow
Anakin:和Coze类似的Agent定制应用,插件支持较少但workflow使用起来更简洁 r
TaskingAI:API-Oriented的类似langchain的大模型应用框架 https://www.tasking.ai/
TypeChat:微软推出的Schema Engineering风格的应用框架 https://github.com/microsoft/TypeChat
DSPy:把稳定性低的prompt优化为参数化和模板化的提示技术 https://github.com/stanfordnlp/dspy
PipeCAT:加入语音的Agent框架 https://github.com/pipecat-ai/pipecat/tree/main
Khoj: 桌面Agent的个人助手可本地部署 https://docs.khoj.dev/
farfalle:本地搭载的RAG引擎 https://github.com/rashadphz/farfalle/tree/main
Verba:本地搭载的RAG引擎 https://github.com/weaviate/Verba
Vanna:本地搭载提供了从已有数据库构建NL2SQL所需RAG数据库的方案 https://github.com/vanna-ai/vanna
TaskWeaver: code-first 的Agent https://github.com/microsoft/TaskWeaver
QMedia:多模态检索框架 https://github.com/QmiAI/Qmedia?tab=readme-ov-file
Mem0: 支持长短期多层记忆的Agent框架 https://github.com/mem0ai/mem0
Automa: Chrome浏览器自动化扩展,相同思路可以接入LLM来进行任务编辑 https://automa.wiki/
RD-Agent: 微软推出的Agent框架和一些demo,例如kaggle Agent https://github.com/microsoft/RD-Agent
Browser-use:适配Langchain,基于playwright的web use 框架 https://github.com/browser-use/browser-use

Agent Bot [托图形化拉拽中间层]

应用 链接
Wordware.ai: 新的flow构建交互形式,像notion一样的magic命令行形式 https://www.wordware.ai/?utm_source=toolify
Coze:免费 https://www.coze.com/
Dify https://dify.ai/zh
Anakin https://app.anakin.ai/discover
FLowise https://github.com/FlowiseAI/Flowise/blob/main/README-ZH.md
Microsoft Power Automate https://www.microsoft.com/zh-cn/power-platform/products/power-automate
Mind Studio:有限使用 https://youai.ai/
QuestFlow:付费 https://www.questflow.ai/
WordWare.ai: https://www.wordware.ai/?ref=aihub.cn
Zion:低代码平台也入局了 https://zion.functorz.com/userCenter/personal
TBOX:阿里版的Coze https://tbox.alipay.com/pro-about

RAG,Agent配套工具

工具 描述
Alexandria 从Arix论文开始把整个互联网变成向量索引,可以免费下载
RapidAPI 统一这个世界的所有API,最大API Hub,有调用成功率,latency等,是真爱!
Composio 可以和langchain,crewAI等进行集成的工具API
PyTesseract OCR解析服务
EasyOCR 确实使用很友好的OCR服务
surya OCR服务
Vary 旷视多模态大模型pdf直接转Markdown
LLamaParse LLamaIndex提供的PDF解析服务,每天免费1000篇
Jina-Cobert Jian AI开源中英德,8192 Token长文本Embedding
BGE-M3 智源开源多语言,稀疏+稠密表征,8192 Token长文本Embedding
BCE 网易开源更适配RAG任务的Embedding模型
PreFLMR-VIT-G 剑桥开源多模态Retriever
openparse 文本解析分块开源服务,先分析文档的视觉布局再进行切分
layout-parser 准确度较高的开源OCR文档布局识别
AdvancedLiterateMachinery 阿里OCR团队的文档解析和图片理解
ragflow-deepdoc ragflow提供的文档识别和解析能力
FireCrawl 爬取url并生成markdown的神器
Jina-Reader 把网页转换成模型可读的格式
spRAG 注入上下文表征,和自动组合上下文提高完整性
knowledge-graph 自动知识图谱构建工具
Marker-API PDF转Markdwon服务
MinerU 文档识别,加入了Layout识别,Reading Order排序,公式识别,OCR文字识别的pipeline
InstaGraph InstaGraph: 把内容直接转换成图谱
https://github.com/microsoft/markitdown 微软开源的多格式转换markdown

其他垂直领域Agent

工具描述 链接
GPT4v-ACT:基于JS DOM识别网页元素,服务于各类多模态webagent https://github.com/ddupont808/GPT-4V-Act?tab=readme-ov-file
Deep-KE:基于LLM对数据进行智能解析实现知识抽取 https://github.com/zjunlp/DeepKE
IncarnaMind:多文档RAG方案,动态chunking的方案可以借鉴 https://github.com/junruxiong/IncarnaMind
Vectra:平台化的LLM Agent搭建方案,从索引构建,内容召回排序,到事实检查的LLM生成 https://vectara.com/tour-vectara/
Data-Copilot:时间序列等结构化数据分析领域的Agent解决方案 https://github.com/zwq2018/Data-Copilot
DB-GPT: 以数据库为基础的GPT实验项目,使用本地化的GPT大模型与您的数据和环境进行交互 https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/index.html
guardrails:降低模型幻觉的python框架,promp模板+validation+修正 https://github.com/shreyar/guardrails
guidance:微软新开源框架,同样是降低模型幻觉的框架,prompt+chain的升级版加入逐步生成和思维链路 https://github.com/guidance-ai/guidance
SolidGPT: 上传个人数据,通过命令交互创建项目PRD等 https://github.com/AI-Citizen/SolidGPT
HR-Agent: 类似HR和员工交互,支持多工具调用 https://github.com/stepanogil/autonomous-hr-chatbot
BambooAI:数据分析Agent https://github.com/pgalko/BambooAI
AlphaCodium:通过Flow Engineering完成代码任务 https://github.com/Codium-ai/AlphaCodium
REOR: AI驱动的笔记软件 https://github.com/reorproject/reor
Vanna.AI: chat with sql database https://vanna.ai/
ScrapeGraph:融合了图逻辑和LLM https://scrapegraph-doc.onrender.com/
OpenAct:Adapt-AI推出了的和桌面GUI交互的Agent框架 https://github.com/OpenAdaptAI/OpenAdapt
LaVague:WebAgent框架,偏低层指令交互性把指令转换成Selenium代码去和网页交互 https://github.com/lavague-ai/LaVague/tree/main
Tarsier: webagent的辅助工具把网站转换成可交互元素序号和描述 https://github.com/reworkd/tarsier?tab=readme-ov-file
RecAI:微软推出的推荐领域LLM Agent https://github.com/microsoft/RecAI
Skyvern: WebAgent框架 https://www.skyvern.com/
Translation Agent: 吴恩达开源的简单的翻译Agent,prompt也是用的XML格式 https://github.com/andrewyng/translation-agent/blob/main/src/translation_agent/utils.py
GPT-Computer-Assistant:和电脑直接进行交互的Agent基于Crewai https://github.com/onuratakan/gpt-computer-assistant
WiseFlow:自动收集数据的爬虫任务 https://github.com/TeamWiseFlow/wiseflow/tree/master
LaVague:WebAgent框架 https://github.com/lavague-ai/LaVague
TransAgent:腾讯推出的多智能体翻译,可以在线体验 https://www.transagents.ai/
Chat2DB:NL2SQL https://github.com/CodePhiliaX/Chat2DB

Prompt Engineer

  • Weavel APE
  • DSPY:类比Pydantic的标准化prompt和针对few-shot选择的调优
  • PromptPerfect:提供多种模态,多模型的prompt一键优化插件
  • LangGPT: 结构化Prompt编写模版