-
Notifications
You must be signed in to change notification settings - Fork 137
/
dataHelper.py
318 lines (257 loc) · 10.8 KB
/
dataHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# -*- coding: utf-8 -*-
import os
import numpy as np
import string
from collections import Counter
import pandas as pd
from tqdm import tqdm
import random
import time
from utils import log_time_delta
from dataloader import Dataset
import torch
from torch.autograd import Variable
from codecs import open
try:
import cPickle as pickle
except ImportError:
import pickle
class Alphabet(dict):
def __init__(self, start_feature_id = 1, alphabet_type="text"):
self.fid = start_feature_id
if alphabet_type=="text":
self.add('[PADDING]')
self.add('[UNK]')
self.add('[END]')
self.unknow_token = self.get('[UNK]')
self.end_token = self.get('[END]')
self.padding_token = self.get('[PADDING]')
def add(self, item):
idx = self.get(item, None)
if idx is None:
idx = self.fid
self[item] = idx
# self[idx] = item
self.fid += 1
return idx
def addAll(self,words):
for word in words:
self.add(word)
def dump(self, fname,path="temp"):
if not os.path.exists(path):
os.mkdir(path)
with open(os.path.join(path,fname), "w",encoding="utf-8") as out:
for k in sorted(self.keys()):
out.write("{}\t{}\n".format(k, self[k]))
class DottableDict(dict):
def __init__(self, *args, **kwargs):
dict.__init__(self, *args, **kwargs)
self.__dict__ = self
self.allowDotting()
def allowDotting(self, state=True):
if state:
self.__dict__ = self
else:
self.__dict__ = dict()
class BucketIterator(object):
def __init__(self,data,opt=None,batch_size=2,shuffle=True,test=False,position=False):
self.shuffle=shuffle
self.data=data
self.batch_size=batch_size
self.test=test
if opt is not None:
self.setup(opt)
def setup(self,opt):
self.batch_size=opt.batch_size
self.shuffle=opt.__dict__.get("shuffle",self.shuffle)
self.position=opt.__dict__.get("position",False)
if self.position:
self.padding_token = opt.alphabet.padding_token
def transform(self,data):
if torch.cuda.is_available():
data=data.reset_index()
text= Variable(torch.LongTensor(data.text).cuda())
label= Variable(torch.LongTensor([int(i) for i in data.label.tolist()]).cuda())
else:
data=data.reset_index()
text= Variable(torch.LongTensor(data.text))
label= Variable(torch.LongTensor(data.label.tolist()))
if self.position:
position_tensor = self.get_position(data.text)
return DottableDict({"text":(text,position_tensor),"label":label})
return DottableDict({"text":text,"label":label})
def get_position(self,inst_data):
inst_position = np.array([[pos_i+1 if w_i != self.padding_token else 0 for pos_i, w_i in enumerate(inst)] for inst in inst_data])
inst_position_tensor = Variable( torch.LongTensor(inst_position), volatile=self.test)
if torch.cuda.is_available():
inst_position_tensor=inst_position_tensor.cuda()
return inst_position_tensor
def __iter__(self):
if self.shuffle:
self.data = self.data.sample(frac=1).reset_index(drop=True)
batch_nums = int(len(self.data)/self.batch_size)
for i in range(batch_nums):
yield self.transform(self.data[i*self.batch_size:(i+1)*self.batch_size])
yield self.transform(self.data[-1*self.batch_size:])
@log_time_delta
def vectors_lookup(vectors,vocab,dim):
embedding = np.zeros((len(vocab),dim))
count = 1
for word in vocab:
if word in vectors:
count += 1
embedding[vocab[word]]= vectors[word]
else:
embedding[vocab[word]]= np.random.uniform(-0.5,+0.5,dim)#vectors['[UNKNOW]'] #.tolist()
print( 'word in embedding',count)
return embedding
@log_time_delta
def load_text_vec(alphabet,filename="",embedding_size=-1):
vectors = {}
with open(filename,encoding='utf-8') as f:
for line in tqdm(f):
items = line.strip().split(' ')
if len(items) == 2:
vocab_size, embedding_size= items[0],items[1]
print( 'embedding_size',embedding_size)
print( 'vocab_size in pretrained embedding',vocab_size)
else:
word = items[0]
if word in alphabet:
vectors[word] = items[1:]
print( 'words need to be found ',len(alphabet))
print( 'words found in wor2vec embedding ',len(vectors.keys()))
if embedding_size==-1:
embedding_size = len(vectors[list(vectors.keys())[0]])
return vectors,embedding_size
def getEmbeddingFile(opt):
#"glove" "w2v"
embedding_name = opt.__dict__.get("embedding","glove_6b_300")
if embedding_name.startswith("glove"):
return os.path.join( ".vector_cache","glove.6B.300d.txt")
else:
return opt.embedding_dir
# please refer to https://pypi.python.org/pypi/torchwordemb/0.0.7
return
@log_time_delta
def getSubVectors(opt,alphabet):
pickle_filename = "temp/"+opt.dataset+".vec"
if not os.path.exists(pickle_filename) or opt.debug:
glove_file = getEmbeddingFile(opt)
wordset= set(alphabet.keys()) # python 2.7
loaded_vectors,embedding_size = load_text_vec(wordset,glove_file)
vectors = vectors_lookup(loaded_vectors,alphabet,embedding_size)
if opt.debug:
if not os.path.exists("temp"):
os.mkdir("temp")
with open("temp/oov.txt","w","utf-8") as f:
unknown_set = set(alphabet.keys()) - set(loaded_vectors.keys())
f.write("\n".join( unknown_set))
if opt.debug:
pickle.dump(vectors,open(pickle_filename,"wb"))
return vectors
else:
print("load cache for SubVector")
return pickle.load(open(pickle_filename,"rb"))
def getDataSet(opt):
import dataloader
dataset= dataloader.getDataset(opt)
# files=[os.path.join(data_dir,data_name) for data_name in ['train.txt','test.txt','dev.txt']]
return dataset.getFormatedData()
#data_dir = os.path.join(".data/clean",opt.dataset)
#if not os.path.exists(data_dir):
# import dataloader
# dataset= dataloader.getDataset(opt)
# return dataset.getFormatedData()
#else:
# for root, dirs, files in os.walk(data_dir):
# for file in files:
# yield os.path.join(root,file)
# files=[os.path.join(data_dir,data_name) for data_name in ['train.txt','test.txt','dev.txt']]
import re
def clean(text):
# text="'tycoon.<br'"
for token in ["<br/>","<br>","<br"]:
text = re.sub(token," ",text)
text = re.sub("[\s+\.\!\/_,$%^*()\(\)<>+\"\[\]\-\?;:\'{}`]+|[+——!,。?、~@#¥%……&*()]+", " ",text)
# print("%s $$$$$ %s" %(pre,text))
return text.lower().split()
@log_time_delta
def get_clean_datas(opt):
pickle_filename = "temp/"+opt.dataset+".data"
if not os.path.exists(pickle_filename) or opt.debug:
datas = []
for filename in getDataSet(opt):
df = pd.read_csv(filename,header = None,sep="\t",names=["text","label"]).fillna('0')
# df["text"]= df["text"].apply(clean).str.lower().str.split() #replace("[\",:#]"," ")
df["text"]= df["text"].apply(clean)
datas.append(df)
if opt.debug:
if not os.path.exists("temp"):
os.mkdir("temp")
pickle.dump(datas,open(pickle_filename,"wb"))
return datas
else:
print("load cache for data")
return pickle.load(open(pickle_filename,"rb"))
def load_vocab_from_bert(bert_base):
bert_vocab_dir = os.path.join(bert_base,"vocab.txt")
alphabet = Alphabet(start_feature_id = 0,alphabet_type="bert")
from pytorch_pretrained_bert import BertTokenizer
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained(bert_vocab_dir)
for index,word in tokenizer.ids_to_tokens.items():
alphabet.add(word)
return alphabet,tokenizer
def process_with_bert(text,tokenizer,max_seq_len) :
tokens =tokenizer.convert_tokens_to_ids( tokenizer.tokenize(" ".join(text[:max_seq_len])))
return tokens[:max_seq_len] + [0] *int(max_seq_len-len(tokens))
def loadData(opt,embedding=True):
if embedding==False:
return loadDataWithoutEmbedding(opt)
datas =get_clean_datas(opt)
alphabet = Alphabet(start_feature_id = 0)
label_alphabet= Alphabet(start_feature_id = 0,alphabet_type="label")
df=pd.concat(datas)
df.to_csv("demo.text",sep="\t",index=False)
label_set = set(df["label"])
label_alphabet.addAll(label_set)
opt.label_size= len(label_alphabet)
if opt.max_seq_len==-1:
opt.max_seq_len = df.apply(lambda row: row["text"].__len__(),axis=1).max()
if "bert" not in opt.model.lower():
word_set=set()
[word_set.add(word) for l in df["text"] if l is not None for word in l ]
# from functools import reduce
# word_set=set(reduce(lambda x,y :x+y,df["text"]))
alphabet.addAll(word_set)
vectors = getSubVectors(opt,alphabet)
opt.vocab_size= len(alphabet)
# opt.label_size= len(label_alphabet)
opt.embedding_dim= vectors.shape[-1]
opt.embeddings = torch.FloatTensor(vectors)
else:
alphabet,tokenizer = load_vocab_from_bert(opt.bert_dir)
opt.alphabet=alphabet
# alphabet.dump(opt.dataset+".alphabet")
for data in datas:
if "bert" not in opt.model.lower():
data["text"]= data["text"].apply(lambda text: [alphabet.get(word,alphabet.unknow_token) for word in text[:opt.max_seq_len]] + [alphabet.padding_token] *int(opt.max_seq_len-len(text)) )
else :
data["text"]= data["text"].apply(process_with_bert,tokenizer=tokenizer,max_seq_len = opt.max_seq_len)
data["label"]=data["label"].apply(lambda text: label_alphabet.get(text))
return map(lambda x:BucketIterator(x,opt),datas)#map(BucketIterator,datas) #
def loadDataWithoutEmbedding(opt):
datas=[]
for filename in getDataSet(opt):
df = pd.read_csv(filename,header = None,sep="\t",names=["text","label"]).fillna('0')
df["text"]= df["text"].str.lower()
datas.append((df["text"],df["label"]))
return datas
if __name__ =="__main__":
import opts
opt = opts.parse_opt()
opt.max_seq_len=-1
import dataloader
dataset= dataloader.getDataset(opt)
datas=loadData(opt)