You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
INFO:lightrag:Logger initialized for working directory: ./dickens
INFO:lightrag:Load KV llm_response_cache with 0 data
INFO:lightrag:Load KV full_docs with 0 data
INFO:lightrag:Load KV text_chunks with 0 data
INFO:nano-vectordb:Init {'embedding_dim': 768, 'metric': 'cosine', 'storage_file': './dickens/vdb_entities.json'} 0 data
INFO:nano-vectordb:Init {'embedding_dim': 768, 'metric': 'cosine', 'storage_file': './dickens/vdb_relationships.json'} 0 data
INFO:nano-vectordb:Init {'embedding_dim': 768, 'metric': 'cosine', 'storage_file': './dickens/vdb_chunks.json'} 0 data
global
INFO:httpx:HTTP Request: POST http://localhost:11434/api/chat "HTTP/1.1 200 OK"
INFO:lightrag:kw_prompt result:
INFO:httpx:HTTP Request: POST http://localhost:11434/api/embeddings "HTTP/1.1 200 OK"
WARNING:lightrag:No high level context found. Switching to local mode.
Traceback (most recent call last):
File "/gemini/code/LightRAG/examples/lightrag_ollama_demo.py", line 54, in
rag.query("这个故事的主要人物有哪些?", param=QueryParam(mode="global"))
File "/gemini/code/LightRAG/lightrag/lightrag.py", line 517, in query
return loop.run_until_complete(self.aquery(query, param))
File "/root/miniconda3/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
return future.result()
File "/gemini/code/LightRAG/lightrag/lightrag.py", line 521, in aquery
response = await kg_query(
File "/gemini/code/LightRAG/lightrag/operate.py", line 532, in kg_query
context = await _build_query_context(
File "/gemini/code/LightRAG/lightrag/operate.py", line 656, in _build_query_context
ll_entities_context,
UnboundLocalError: local variable 'll_entities_context' referenced before assignment
其他模式都没问题,就global会报错
The text was updated successfully, but these errors were encountered:
INFO:lightrag:Logger initialized for working directory: ./dickens
INFO:lightrag:Load KV llm_response_cache with 0 data
INFO:lightrag:Load KV full_docs with 0 data
INFO:lightrag:Load KV text_chunks with 0 data
INFO:nano-vectordb:Init {'embedding_dim': 768, 'metric': 'cosine', 'storage_file': './dickens/vdb_entities.json'} 0 data
INFO:nano-vectordb:Init {'embedding_dim': 768, 'metric': 'cosine', 'storage_file': './dickens/vdb_relationships.json'} 0 data
INFO:nano-vectordb:Init {'embedding_dim': 768, 'metric': 'cosine', 'storage_file': './dickens/vdb_chunks.json'} 0 data
global
INFO:httpx:HTTP Request: POST http://localhost:11434/api/chat "HTTP/1.1 200 OK"
INFO:lightrag:kw_prompt result:
INFO:httpx:HTTP Request: POST http://localhost:11434/api/embeddings "HTTP/1.1 200 OK"
WARNING:lightrag:No high level context found. Switching to local mode.
Traceback (most recent call last):
File "/gemini/code/LightRAG/examples/lightrag_ollama_demo.py", line 54, in
rag.query("这个故事的主要人物有哪些?", param=QueryParam(mode="global"))
File "/gemini/code/LightRAG/lightrag/lightrag.py", line 517, in query
return loop.run_until_complete(self.aquery(query, param))
File "/root/miniconda3/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
return future.result()
File "/gemini/code/LightRAG/lightrag/lightrag.py", line 521, in aquery
response = await kg_query(
File "/gemini/code/LightRAG/lightrag/operate.py", line 532, in kg_query
context = await _build_query_context(
File "/gemini/code/LightRAG/lightrag/operate.py", line 656, in _build_query_context
ll_entities_context,
UnboundLocalError: local variable 'll_entities_context' referenced before assignment
其他模式都没问题,就global会报错
The text was updated successfully, but these errors were encountered: