-
Notifications
You must be signed in to change notification settings - Fork 249
/
run_KDD_17_CollaborativeVAE.py
357 lines (237 loc) · 14.7 KB
/
run_KDD_17_CollaborativeVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 22/11/17
@author: Maurizio Ferrari Dacrema
"""
from Recommender_import_list import *
from Conferences.KDD.CollaborativeVAE_our_interface.CollaborativeVAE_RecommenderWrapper import CollaborativeVAE_RecommenderWrapper
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative, runParameterSearch_Content, runParameterSearch_Hybrid
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderArgs
from functools import partial
import os, traceback, argparse
import numpy as np
from Utils.ResultFolderLoader import ResultFolderLoader, generate_latex_hyperparameters
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
def read_data_split_and_search(dataset_variant, train_interactions,
flag_baselines_tune = False,
flag_DL_article_default = False, flag_DL_tune = False,
flag_print_results = False):
from Conferences.KDD.CollaborativeVAE_our_interface.Citeulike.CiteulikeReader import CiteulikeReader
result_folder_path = "result_experiments/{}/{}_citeulike_{}_{}/".format(CONFERENCE_NAME, ALGORITHM_NAME, dataset_variant, train_interactions)
dataset = CiteulikeReader(result_folder_path, dataset_variant = dataset_variant, train_interactions = train_interactions)
URM_train = dataset.URM_DICT["URM_train"].copy()
URM_validation = dataset.URM_DICT["URM_validation"].copy()
URM_test = dataset.URM_DICT["URM_test"].copy()
del dataset.ICM_DICT["ICM_tokens_bool"]
# Ensure IMPLICIT data
assert_implicit_data([URM_train, URM_validation, URM_test])
# Due to the sparsity of the dataset, choosing an evaluation as subset of the train
# While keeping validation interaction in the train set
if train_interactions == 1:
# In this case the train data will contain validation data to avoid cold users
assert_disjoint_matrices([URM_train, URM_test])
assert_disjoint_matrices([URM_validation, URM_test])
exclude_seen_validation = False
URM_train_last_test = URM_train
else:
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
exclude_seen_validation = True
URM_train_last_test = URM_train + URM_validation
assert_implicit_data([URM_train_last_test])
# If directory does not exist, create
if not os.path.exists(result_folder_path):
os.makedirs(result_folder_path)
from Base.Evaluation.Evaluator import EvaluatorHoldout
evaluator_validation = EvaluatorHoldout(URM_validation, cutoff_list=[150], exclude_seen = exclude_seen_validation)
evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[50, 100, 150, 200, 250, 300])
collaborative_algorithm_list = [
Random,
TopPop,
UserKNNCFRecommender,
ItemKNNCFRecommender,
P3alphaRecommender,
RP3betaRecommender,
PureSVDRecommender,
NMFRecommender,
IALSRecommender,
MatrixFactorization_BPR_Cython,
MatrixFactorization_FunkSVD_Cython,
EASE_R_Recommender,
SLIM_BPR_Cython,
SLIMElasticNetRecommender,
]
metric_to_optimize = "RECALL"
n_cases = 50
n_random_starts = 15
runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
URM_train = URM_train,
URM_train_last_test = URM_train_last_test,
metric_to_optimize = metric_to_optimize,
evaluator_validation_earlystopping = evaluator_validation,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
n_cases = n_cases,
n_random_starts = n_random_starts)
if flag_baselines_tune:
for recommender_class in collaborative_algorithm_list:
try:
runParameterSearch_Collaborative_partial(recommender_class)
except Exception as e:
print("On recommender {} Exception {}".format(recommender_class, str(e)))
traceback.print_exc()
################################################################################################
###### Content Baselines
for ICM_name, ICM_object in dataset.ICM_DICT.items():
try:
runParameterSearch_Content(ItemKNNCBFRecommender,
URM_train = URM_train,
URM_train_last_test = URM_train_last_test,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = ICM_name,
ICM_object = ICM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
except Exception as e:
print("On CBF recommender for ICM {} Exception {}".format(ICM_name, str(e)))
traceback.print_exc()
################################################################################################
###### Hybrid
for ICM_name, ICM_object in dataset.ICM_DICT.items():
try:
runParameterSearch_Hybrid(ItemKNN_CFCBF_Hybrid_Recommender,
URM_train = URM_train,
URM_train_last_test = URM_train_last_test,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = ICM_name,
ICM_object = ICM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
except Exception as e:
print("On recommender {} Exception {}".format(ItemKNN_CFCBF_Hybrid_Recommender, str(e)))
traceback.print_exc()
################################################################################################
######
###### DL ALGORITHM
######
if flag_DL_article_default:
try:
cvae_recommender_article_hyperparameters = {
"epochs": 200,
"learning_rate_vae": 1e-2,
"learning_rate_cvae": 1e-3,
"num_factors": 50,
"dimensions_vae": [200, 100],
"epochs_vae": [50, 50],
"batch_size": 128,
"lambda_u": 0.1,
"lambda_v": 10,
"lambda_r": 1,
"a": 1,
"b": 0.01,
"M": 300,
}
cvae_earlystopping_hyperparameters = {
"validation_every_n": 5,
"stop_on_validation": True,
"evaluator_object": evaluator_validation,
"lower_validations_allowed": 5,
"validation_metric": metric_to_optimize
}
parameterSearch = SearchSingleCase(CollaborativeVAE_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_input_args = SearchInputRecommenderArgs(
CONSTRUCTOR_POSITIONAL_ARGS = [URM_train, dataset.ICM_DICT["ICM_tokens_TFIDF"]],
FIT_KEYWORD_ARGS = cvae_earlystopping_hyperparameters)
recommender_input_args_last_test = recommender_input_args.copy()
recommender_input_args_last_test.CONSTRUCTOR_POSITIONAL_ARGS[0] = URM_train_last_test
parameterSearch.search(recommender_input_args,
recommender_input_args_last_test = recommender_input_args_last_test,
fit_hyperparameters_values=cvae_recommender_article_hyperparameters,
output_folder_path = result_folder_path,
resume_from_saved = True,
output_file_name_root = CollaborativeVAE_RecommenderWrapper.RECOMMENDER_NAME)
except Exception as e:
print("On recommender {} Exception {}".format(CollaborativeVAE_RecommenderWrapper, str(e)))
traceback.print_exc()
################################################################################################
######
###### PRINT RESULTS
######
if flag_print_results:
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
ICM_names_to_report_list = list(dataset.ICM_DICT.keys())
dataset_name = "{}_{}".format(dataset_variant, train_interactions)
file_name = "{}..//{}_{}_".format(result_folder_path, ALGORITHM_NAME, dataset_name)
result_loader = ResultFolderLoader(result_folder_path,
base_algorithm_list = None,
other_algorithm_list = other_algorithm_list,
KNN_similarity_list = KNN_similarity_to_report_list,
ICM_names_list = ICM_names_to_report_list,
UCM_names_list = None)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("article_metrics"),
metrics_list = ["RECALL"],
cutoffs_list = [50, 100, 150, 200, 250, 300],
table_title = None,
highlight_best = True)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("all_metrics"),
metrics_list = ["PRECISION", "RECALL", "MAP_MIN_DEN", "MRR", "NDCG", "F1", "HIT_RATE", "ARHR_ALL_HITS",
"NOVELTY", "DIVERSITY_MEAN_INTER_LIST", "DIVERSITY_HERFINDAHL", "COVERAGE_ITEM", "DIVERSITY_GINI", "SHANNON_ENTROPY"],
cutoffs_list = [150],
table_title = None,
highlight_best = True)
result_loader.generate_latex_time_statistics(file_name + "{}_latex_results.txt".format("time"),
n_evaluation_users=n_test_users,
table_title = None)
__name__ = "__main__"
if __name__ == '__main__':
ALGORITHM_NAME = "CollaborativeVAE"
CONFERENCE_NAME = "KDD"
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--baseline_tune', help="Baseline hyperparameter search", type = bool, default = False)
parser.add_argument('-a', '--DL_article_default', help="Train the DL model with article hyperparameters", type = bool, default = False)
parser.add_argument('-p', '--print_results', help="Print results", type = bool, default = True)
input_flags = parser.parse_args()
print(input_flags)
KNN_similarity_to_report_list = ["cosine", "dice", "jaccard", "asymmetric", "tversky"]
dataset_variant_list = ["a", "t"]
train_interactions_list = [1, 10]
from collections import namedtuple
CustomRecommenderName = namedtuple('CustomRecommenderName', ['RECOMMENDER_NAME'])
other_algorithm_list_names = [CollaborativeVAE_RecommenderWrapper.RECOMMENDER_NAME, "CollaborativeDL_Matlab_RecommenderWrapper"]
other_algorithm_list = [CustomRecommenderName(RECOMMENDER_NAME = recommender_name) for recommender_name in other_algorithm_list_names]
for dataset_variant in dataset_variant_list:
for train_interactions in train_interactions_list:
read_data_split_and_search(dataset_variant, train_interactions,
flag_baselines_tune=input_flags.baseline_tune,
flag_DL_article_default= input_flags.DL_article_default,
flag_print_results = input_flags.print_results,
)
if input_flags.print_results:
generate_latex_hyperparameters(result_folder_path ="result_experiments/{}/".format(CONFERENCE_NAME),
algorithm_name= ALGORITHM_NAME,
experiment_subfolder_list = [
"citeulike_{}_{}".format(dataset_variant, train_interactions) for dataset_variant in dataset_variant_list for train_interactions in train_interactions_list
],
ICM_names_to_report_list = ["ICM_tokens_TFIDF"],
KNN_similarity_to_report_list = KNN_similarity_to_report_list,
other_algorithm_list = other_algorithm_list,
split_per_algorithm_type = True)