-
-
Notifications
You must be signed in to change notification settings - Fork 46k
/
postfix_evaluation.py
200 lines (183 loc) · 5.86 KB
/
postfix_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
Reverse Polish Nation is also known as Polish postfix notation or simply postfix
notation.
https://en.wikipedia.org/wiki/Reverse_Polish_notation
Classic examples of simple stack implementations.
Valid operators are +, -, *, /.
Each operand may be an integer or another expression.
Output:
Enter a Postfix Equation (space separated) = 5 6 9 * +
Symbol | Action | Stack
-----------------------------------
5 | push(5) | 5
6 | push(6) | 5,6
9 | push(9) | 5,6,9
| pop(9) | 5,6
| pop(6) | 5
* | push(6*9) | 5,54
| pop(54) | 5
| pop(5) |
+ | push(5+54) | 59
Result = 59
"""
# Defining valid unary operator symbols
UNARY_OP_SYMBOLS = ("-", "+")
# operators & their respective operation
OPERATORS = {
"^": lambda p, q: p**q,
"*": lambda p, q: p * q,
"/": lambda p, q: p / q,
"+": lambda p, q: p + q,
"-": lambda p, q: p - q,
}
def parse_token(token: str | float) -> float | str:
"""
Converts the given data to the appropriate number if it is indeed a number, else
returns the data as it is with a False flag. This function also serves as a check
of whether the input is a number or not.
Parameters
----------
token: The data that needs to be converted to the appropriate operator or number.
Returns
-------
float or str
Returns a float if `token` is a number or a str if `token` is an operator
"""
if token in OPERATORS:
return token
try:
return float(token)
except ValueError:
msg = f"{token} is neither a number nor a valid operator"
raise ValueError(msg)
def evaluate(post_fix: list[str], verbose: bool = False) -> float:
"""
Evaluate postfix expression using a stack.
>>> evaluate(["0"])
0.0
>>> evaluate(["-0"])
-0.0
>>> evaluate(["1"])
1.0
>>> evaluate(["-1"])
-1.0
>>> evaluate(["-1.1"])
-1.1
>>> evaluate(["2", "1", "+", "3", "*"])
9.0
>>> evaluate(["2", "1.9", "+", "3", "*"])
11.7
>>> evaluate(["2", "-1.9", "+", "3", "*"])
0.30000000000000027
>>> evaluate(["4", "13", "5", "/", "+"])
6.6
>>> evaluate(["2", "-", "3", "+"])
1.0
>>> evaluate(["-4", "5", "*", "6", "-"])
-26.0
>>> evaluate([])
0
>>> evaluate(["4", "-", "6", "7", "/", "9", "8"])
Traceback (most recent call last):
...
ArithmeticError: Input is not a valid postfix expression
Parameters
----------
post_fix:
The postfix expression is tokenized into operators and operands and stored
as a Python list
verbose:
Display stack contents while evaluating the expression if verbose is True
Returns
-------
float
The evaluated value
"""
if not post_fix:
return 0
# Checking the list to find out whether the postfix expression is valid
valid_expression = [parse_token(token) for token in post_fix]
if verbose:
# print table header
print("Symbol".center(8), "Action".center(12), "Stack", sep=" | ")
print("-" * (30 + len(post_fix)))
stack = []
for x in valid_expression:
if x not in OPERATORS:
stack.append(x) # append x to stack
if verbose:
# output in tabular format
print(
f"{x}".rjust(8),
f"push({x})".ljust(12),
stack,
sep=" | ",
)
continue
# If x is operator
# If only 1 value is inside the stack and + or - is encountered
# then this is unary + or - case
if x in UNARY_OP_SYMBOLS and len(stack) < 2:
b = stack.pop() # pop stack
if x == "-":
b *= -1 # negate b
stack.append(b)
if verbose:
# output in tabular format
print(
"".rjust(8),
f"pop({b})".ljust(12),
stack,
sep=" | ",
)
print(
str(x).rjust(8),
f"push({x}{b})".ljust(12),
stack,
sep=" | ",
)
continue
b = stack.pop() # pop stack
if verbose:
# output in tabular format
print(
"".rjust(8),
f"pop({b})".ljust(12),
stack,
sep=" | ",
)
a = stack.pop() # pop stack
if verbose:
# output in tabular format
print(
"".rjust(8),
f"pop({a})".ljust(12),
stack,
sep=" | ",
)
# evaluate the 2 values popped from stack & push result to stack
stack.append(OPERATORS[x](a, b)) # type: ignore[index]
if verbose:
# output in tabular format
print(
f"{x}".rjust(8),
f"push({a}{x}{b})".ljust(12),
stack,
sep=" | ",
)
# If everything is executed correctly, the stack will contain
# only one element which is the result
if len(stack) != 1:
raise ArithmeticError("Input is not a valid postfix expression")
return float(stack[0])
if __name__ == "__main__":
# Create a loop so that the user can evaluate postfix expressions multiple times
while True:
expression = input("Enter a Postfix Expression (space separated): ").split(" ")
prompt = "Do you want to see stack contents while evaluating? [y/N]: "
verbose = input(prompt).strip().lower() == "y"
output = evaluate(expression, verbose)
print("Result = ", output)
prompt = "Do you want to enter another expression? [y/N]: "
if input(prompt).strip().lower() != "y":
break