-
-
Notifications
You must be signed in to change notification settings - Fork 46k
/
simplex.py
339 lines (273 loc) · 11.6 KB
/
simplex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
Python implementation of the simplex algorithm for solving linear programs in
tabular form with
- `>=`, `<=`, and `=` constraints and
- each variable `x1, x2, ...>= 0`.
See https://gist.github.com/imengus/f9619a568f7da5bc74eaf20169a24d98 for how to
convert linear programs to simplex tableaus, and the steps taken in the simplex
algorithm.
Resources:
https://en.wikipedia.org/wiki/Simplex_algorithm
https://tinyurl.com/simplex4beginners
"""
from typing import Any
import numpy as np
class Tableau:
"""Operate on simplex tableaus
>>> Tableau(np.array([[-1,-1,0,0,1],[1,3,1,0,4],[3,1,0,1,4]]), 2, 2)
Traceback (most recent call last):
...
TypeError: Tableau must have type float64
>>> Tableau(np.array([[-1,-1,0,0,-1],[1,3,1,0,4],[3,1,0,1,4.]]), 2, 2)
Traceback (most recent call last):
...
ValueError: RHS must be > 0
>>> Tableau(np.array([[-1,-1,0,0,1],[1,3,1,0,4],[3,1,0,1,4.]]), -2, 2)
Traceback (most recent call last):
...
ValueError: number of (artificial) variables must be a natural number
"""
# Max iteration number to prevent cycling
maxiter = 100
def __init__(
self, tableau: np.ndarray, n_vars: int, n_artificial_vars: int
) -> None:
if tableau.dtype != "float64":
raise TypeError("Tableau must have type float64")
# Check if RHS is negative
if not (tableau[:, -1] >= 0).all():
raise ValueError("RHS must be > 0")
if n_vars < 2 or n_artificial_vars < 0:
raise ValueError(
"number of (artificial) variables must be a natural number"
)
self.tableau = tableau
self.n_rows, n_cols = tableau.shape
# Number of decision variables x1, x2, x3...
self.n_vars, self.n_artificial_vars = n_vars, n_artificial_vars
# 2 if there are >= or == constraints (nonstandard), 1 otherwise (std)
self.n_stages = (self.n_artificial_vars > 0) + 1
# Number of slack variables added to make inequalities into equalities
self.n_slack = n_cols - self.n_vars - self.n_artificial_vars - 1
# Objectives for each stage
self.objectives = ["max"]
# In two stage simplex, first minimise then maximise
if self.n_artificial_vars:
self.objectives.append("min")
self.col_titles = self.generate_col_titles()
# Index of current pivot row and column
self.row_idx = None
self.col_idx = None
# Does objective row only contain (non)-negative values?
self.stop_iter = False
def generate_col_titles(self) -> list[str]:
"""Generate column titles for tableau of specific dimensions
>>> Tableau(np.array([[-1,-1,0,0,1],[1,3,1,0,4],[3,1,0,1,4.]]),
... 2, 0).generate_col_titles()
['x1', 'x2', 's1', 's2', 'RHS']
>>> Tableau(np.array([[-1,-1,0,0,1],[1,3,1,0,4],[3,1,0,1,4.]]),
... 2, 2).generate_col_titles()
['x1', 'x2', 'RHS']
"""
args = (self.n_vars, self.n_slack)
# decision | slack
string_starts = ["x", "s"]
titles = []
for i in range(2):
for j in range(args[i]):
titles.append(string_starts[i] + str(j + 1))
titles.append("RHS")
return titles
def find_pivot(self) -> tuple[Any, Any]:
"""Finds the pivot row and column.
>>> tuple(int(x) for x in Tableau(np.array([[-2,1,0,0,0], [3,1,1,0,6],
... [1,2,0,1,7.]]), 2, 0).find_pivot())
(1, 0)
"""
objective = self.objectives[-1]
# Find entries of highest magnitude in objective rows
sign = (objective == "min") - (objective == "max")
col_idx = np.argmax(sign * self.tableau[0, :-1])
# Choice is only valid if below 0 for maximise, and above for minimise
if sign * self.tableau[0, col_idx] <= 0:
self.stop_iter = True
return 0, 0
# Pivot row is chosen as having the lowest quotient when elements of
# the pivot column divide the right-hand side
# Slice excluding the objective rows
s = slice(self.n_stages, self.n_rows)
# RHS
dividend = self.tableau[s, -1]
# Elements of pivot column within slice
divisor = self.tableau[s, col_idx]
# Array filled with nans
nans = np.full(self.n_rows - self.n_stages, np.nan)
# If element in pivot column is greater than zero, return
# quotient or nan otherwise
quotients = np.divide(dividend, divisor, out=nans, where=divisor > 0)
# Arg of minimum quotient excluding the nan values. n_stages is added
# to compensate for earlier exclusion of objective columns
row_idx = np.nanargmin(quotients) + self.n_stages
return row_idx, col_idx
def pivot(self, row_idx: int, col_idx: int) -> np.ndarray:
"""Pivots on value on the intersection of pivot row and column.
>>> Tableau(np.array([[-2,-3,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]),
... 2, 2).pivot(1, 0).tolist()
... # doctest: +NORMALIZE_WHITESPACE
[[0.0, 3.0, 2.0, 0.0, 8.0],
[1.0, 3.0, 1.0, 0.0, 4.0],
[0.0, -8.0, -3.0, 1.0, -8.0]]
"""
# Avoid changes to original tableau
piv_row = self.tableau[row_idx].copy()
piv_val = piv_row[col_idx]
# Entry becomes 1
piv_row *= 1 / piv_val
# Variable in pivot column becomes basic, ie the only non-zero entry
for idx, coeff in enumerate(self.tableau[:, col_idx]):
self.tableau[idx] += -coeff * piv_row
self.tableau[row_idx] = piv_row
return self.tableau
def change_stage(self) -> np.ndarray:
"""Exits first phase of the two-stage method by deleting artificial
rows and columns, or completes the algorithm if exiting the standard
case.
>>> Tableau(np.array([
... [3, 3, -1, -1, 0, 0, 4],
... [2, 1, 0, 0, 0, 0, 0.],
... [1, 2, -1, 0, 1, 0, 2],
... [2, 1, 0, -1, 0, 1, 2]
... ]), 2, 2).change_stage().tolist()
... # doctest: +NORMALIZE_WHITESPACE
[[2.0, 1.0, 0.0, 0.0, 0.0],
[1.0, 2.0, -1.0, 0.0, 2.0],
[2.0, 1.0, 0.0, -1.0, 2.0]]
"""
# Objective of original objective row remains
self.objectives.pop()
if not self.objectives:
return self.tableau
# Slice containing ids for artificial columns
s = slice(-self.n_artificial_vars - 1, -1)
# Delete the artificial variable columns
self.tableau = np.delete(self.tableau, s, axis=1)
# Delete the objective row of the first stage
self.tableau = np.delete(self.tableau, 0, axis=0)
self.n_stages = 1
self.n_rows -= 1
self.n_artificial_vars = 0
self.stop_iter = False
return self.tableau
def run_simplex(self) -> dict[Any, Any]:
"""Operate on tableau until objective function cannot be
improved further.
# Standard linear program:
Max: x1 + x2
ST: x1 + 3x2 <= 4
3x1 + x2 <= 4
>>> {key: float(value) for key, value in Tableau(np.array([[-1,-1,0,0,0],
... [1,3,1,0,4],[3,1,0,1,4.]]), 2, 0).run_simplex().items()}
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
# Standard linear program with 3 variables:
Max: 3x1 + x2 + 3x3
ST: 2x1 + x2 + x3 ≤ 2
x1 + 2x2 + 3x3 ≤ 5
2x1 + 2x2 + x3 ≤ 6
>>> {key: float(value) for key, value in Tableau(np.array([
... [-3,-1,-3,0,0,0,0],
... [2,1,1,1,0,0,2],
... [1,2,3,0,1,0,5],
... [2,2,1,0,0,1,6.]
... ]),3,0).run_simplex().items()} # doctest: +ELLIPSIS
{'P': 5.4, 'x1': 0.199..., 'x3': 1.6}
# Optimal tableau input:
>>> {key: float(value) for key, value in Tableau(np.array([
... [0, 0, 0.25, 0.25, 2],
... [0, 1, 0.375, -0.125, 1],
... [1, 0, -0.125, 0.375, 1]
... ]), 2, 0).run_simplex().items()}
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
# Non-standard: >= constraints
Max: 2x1 + 3x2 + x3
ST: x1 + x2 + x3 <= 40
2x1 + x2 - x3 >= 10
- x2 + x3 >= 10
>>> {key: float(value) for key, value in Tableau(np.array([
... [2, 0, 0, 0, -1, -1, 0, 0, 20],
... [-2, -3, -1, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 0, 0, 0, 0, 40],
... [2, 1, -1, 0, -1, 0, 1, 0, 10],
... [0, -1, 1, 0, 0, -1, 0, 1, 10.]
... ]), 3, 2).run_simplex().items()}
{'P': 70.0, 'x1': 10.0, 'x2': 10.0, 'x3': 20.0}
# Non standard: minimisation and equalities
Min: x1 + x2
ST: 2x1 + x2 = 12
6x1 + 5x2 = 40
>>> {key: float(value) for key, value in Tableau(np.array([
... [8, 6, 0, 0, 52],
... [1, 1, 0, 0, 0],
... [2, 1, 1, 0, 12],
... [6, 5, 0, 1, 40.],
... ]), 2, 2).run_simplex().items()}
{'P': 7.0, 'x1': 5.0, 'x2': 2.0}
# Pivot on slack variables
Max: 8x1 + 6x2
ST: x1 + 3x2 <= 33
4x1 + 2x2 <= 48
2x1 + 4x2 <= 48
x1 + x2 >= 10
x1 >= 2
>>> {key: float(value) for key, value in Tableau(np.array([
... [2, 1, 0, 0, 0, -1, -1, 0, 0, 12.0],
... [-8, -6, 0, 0, 0, 0, 0, 0, 0, 0.0],
... [1, 3, 1, 0, 0, 0, 0, 0, 0, 33.0],
... [4, 2, 0, 1, 0, 0, 0, 0, 0, 60.0],
... [2, 4, 0, 0, 1, 0, 0, 0, 0, 48.0],
... [1, 1, 0, 0, 0, -1, 0, 1, 0, 10.0],
... [1, 0, 0, 0, 0, 0, -1, 0, 1, 2.0]
... ]), 2, 2).run_simplex().items()} # doctest: +ELLIPSIS
{'P': 132.0, 'x1': 12.000... 'x2': 5.999...}
"""
# Stop simplex algorithm from cycling.
for _ in range(Tableau.maxiter):
# Completion of each stage removes an objective. If both stages
# are complete, then no objectives are left
if not self.objectives:
# Find the values of each variable at optimal solution
return self.interpret_tableau()
row_idx, col_idx = self.find_pivot()
# If there are no more negative values in objective row
if self.stop_iter:
# Delete artificial variable columns and rows. Update attributes
self.tableau = self.change_stage()
else:
self.tableau = self.pivot(row_idx, col_idx)
return {}
def interpret_tableau(self) -> dict[str, float]:
"""Given the final tableau, add the corresponding values of the basic
decision variables to the `output_dict`
>>> {key: float(value) for key, value in Tableau(np.array([
... [0,0,0.875,0.375,5],
... [0,1,0.375,-0.125,1],
... [1,0,-0.125,0.375,1]
... ]),2, 0).interpret_tableau().items()}
{'P': 5.0, 'x1': 1.0, 'x2': 1.0}
"""
# P = RHS of final tableau
output_dict = {"P": abs(self.tableau[0, -1])}
for i in range(self.n_vars):
# Gives indices of nonzero entries in the ith column
nonzero = np.nonzero(self.tableau[:, i])
n_nonzero = len(nonzero[0])
# First entry in the nonzero indices
nonzero_rowidx = nonzero[0][0]
nonzero_val = self.tableau[nonzero_rowidx, i]
# If there is only one nonzero value in column, which is one
if n_nonzero == 1 and nonzero_val == 1:
rhs_val = self.tableau[nonzero_rowidx, -1]
output_dict[self.col_titles[i]] = rhs_val
return output_dict
if __name__ == "__main__":
import doctest
doctest.testmod()