-
-
Notifications
You must be signed in to change notification settings - Fork 46k
/
matrix_multiplication_recursion.py
181 lines (157 loc) · 5.03 KB
/
matrix_multiplication_recursion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# @Author : ojas-wani
# @File : matrix_multiplication_recursion.py
# @Date : 10/06/2023
"""
Perform matrix multiplication using a recursive algorithm.
https://en.wikipedia.org/wiki/Matrix_multiplication
"""
# type Matrix = list[list[int]] # psf/black currenttly fails on this line
Matrix = list[list[int]]
matrix_1_to_4 = [
[1, 2],
[3, 4],
]
matrix_5_to_8 = [
[5, 6],
[7, 8],
]
matrix_5_to_9_high = [
[5, 6],
[7, 8],
[9],
]
matrix_5_to_9_wide = [
[5, 6],
[7, 8, 9],
]
matrix_count_up = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]
matrix_unordered = [
[5, 8, 1, 2],
[6, 7, 3, 0],
[4, 5, 9, 1],
[2, 6, 10, 14],
]
matrices = (
matrix_1_to_4,
matrix_5_to_8,
matrix_5_to_9_high,
matrix_5_to_9_wide,
matrix_count_up,
matrix_unordered,
)
def is_square(matrix: Matrix) -> bool:
"""
>>> is_square([])
True
>>> is_square(matrix_1_to_4)
True
>>> is_square(matrix_5_to_9_high)
False
"""
len_matrix = len(matrix)
return all(len(row) == len_matrix for row in matrix)
def matrix_multiply(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
"""
>>> matrix_multiply(matrix_1_to_4, matrix_5_to_8)
[[19, 22], [43, 50]]
"""
return [
[sum(a * b for a, b in zip(row, col)) for col in zip(*matrix_b)]
for row in matrix_a
]
def matrix_multiply_recursive(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
"""
:param matrix_a: A square Matrix.
:param matrix_b: Another square Matrix with the same dimensions as matrix_a.
:return: Result of matrix_a * matrix_b.
:raises ValueError: If the matrices cannot be multiplied.
>>> matrix_multiply_recursive([], [])
[]
>>> matrix_multiply_recursive(matrix_1_to_4, matrix_5_to_8)
[[19, 22], [43, 50]]
>>> matrix_multiply_recursive(matrix_count_up, matrix_unordered)
[[37, 61, 74, 61], [105, 165, 166, 129], [173, 269, 258, 197], [241, 373, 350, 265]]
>>> matrix_multiply_recursive(matrix_1_to_4, matrix_5_to_9_wide)
Traceback (most recent call last):
...
ValueError: Invalid matrix dimensions
>>> matrix_multiply_recursive(matrix_1_to_4, matrix_5_to_9_high)
Traceback (most recent call last):
...
ValueError: Invalid matrix dimensions
>>> matrix_multiply_recursive(matrix_1_to_4, matrix_count_up)
Traceback (most recent call last):
...
ValueError: Invalid matrix dimensions
"""
if not matrix_a or not matrix_b:
return []
if not all(
(len(matrix_a) == len(matrix_b), is_square(matrix_a), is_square(matrix_b))
):
raise ValueError("Invalid matrix dimensions")
# Initialize the result matrix with zeros
result = [[0] * len(matrix_b[0]) for _ in range(len(matrix_a))]
# Recursive multiplication of matrices
def multiply(
i_loop: int,
j_loop: int,
k_loop: int,
matrix_a: Matrix,
matrix_b: Matrix,
result: Matrix,
) -> None:
"""
:param matrix_a: A square Matrix.
:param matrix_b: Another square Matrix with the same dimensions as matrix_a.
:param result: Result matrix
:param i: Index used for iteration during multiplication.
:param j: Index used for iteration during multiplication.
:param k: Index used for iteration during multiplication.
>>> 0 > 1 # Doctests in inner functions are never run
True
"""
if i_loop >= len(matrix_a):
return
if j_loop >= len(matrix_b[0]):
return multiply(i_loop + 1, 0, 0, matrix_a, matrix_b, result)
if k_loop >= len(matrix_b):
return multiply(i_loop, j_loop + 1, 0, matrix_a, matrix_b, result)
result[i_loop][j_loop] += matrix_a[i_loop][k_loop] * matrix_b[k_loop][j_loop]
return multiply(i_loop, j_loop, k_loop + 1, matrix_a, matrix_b, result)
# Perform the recursive matrix multiplication
multiply(0, 0, 0, matrix_a, matrix_b, result)
return result
if __name__ == "__main__":
from doctest import testmod
failure_count, test_count = testmod()
if not failure_count:
matrix_a = matrices[0]
for matrix_b in matrices[1:]:
print("Multiplying:")
for row in matrix_a:
print(row)
print("By:")
for row in matrix_b:
print(row)
print("Result:")
try:
result = matrix_multiply_recursive(matrix_a, matrix_b)
for row in result:
print(row)
assert result == matrix_multiply(matrix_a, matrix_b)
except ValueError as e:
print(f"{e!r}")
print()
matrix_a = matrix_b
print("Benchmark:")
from functools import partial
from timeit import timeit
mytimeit = partial(timeit, globals=globals(), number=100_000)
for func in ("matrix_multiply", "matrix_multiply_recursive"):
print(f"{func:>25}(): {mytimeit(f'{func}(matrix_count_up, matrix_unordered)')}")