-
Notifications
You must be signed in to change notification settings - Fork 15
/
generate_feature.py
117 lines (101 loc) · 4.38 KB
/
generate_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.autograd import Variable
import os
import numpy as np
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save_dir', type=str, default='./train',
help="the path to save the trained model")
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv1_bn = nn.BatchNorm2d(10)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_bn = nn.BatchNorm2d(20)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc1_bn = nn.BatchNorm1d(50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
bn_1 = self.conv1_bn(self.conv1(x))
x = F.relu(F.max_pool2d(bn_1, 2))
#x = F.relu(F.max_pool2d(self.conv1(x), 2))
bn_2 = self.conv2_bn(self.conv2(x))
#x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(bn_2), 2))
x = x.view(-1, 320)
bn_fc = self.fc1_bn(self.fc1(x))
#x = F.relu(self.fc1(x))
x = F.relu(bn_fc)
x = F.dropout(x, training=self.training)
#x = self.fc2(x)
#return F.log_softmax(x, dim=1)
return x
model = Net()
model_path = os.path.join(args.save_dir, 'mnist_bn.pth')
model.load_state_dict(torch.load(model_path))
if args.cuda:
model.cuda()
def generate_feature():
model.eval()
cnt = 0
out_target = []
out_data = []
out_output =[]
for data, target in train_loader:
cnt += len(data)
print("processing: %d/%d" % (cnt, len(train_loader.dataset)))
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
output_np = output.data.cpu().numpy()
target_np = target.data.cpu().numpy()
data_np = data.data.cpu().numpy()
out_output.append(output_np)
out_target.append(target_np[:, np.newaxis])
out_data.append(np.squeeze(data_np))
output_array = np.concatenate(out_output, axis=0)
target_array = np.concatenate(out_target, axis=0)
data_array = np.concatenate(out_data, axis=0)
np.save(os.path.join(args.save_dir, 'output.npy'), output_array, allow_pickle=False)
np.save(os.path.join(args.save_dir, 'target.npy'), target_array, allow_pickle=False)
np.save(os.path.join(args.save_dir, 'data.npy'), data_array, allow_pickle=False)
generate_feature()