-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpt.py
264 lines (209 loc) · 8.66 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import torch.nn as nn
from torch.nn import functional as F
block_size = 64
batch_size = 256
max_iters = 5000
eval_interval = 300
eval_iters = 200
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
n_emb_d = 384 # number of embedding dimensions
n_head = 6 # number of attention heads
n_layer = 6 # number of layers in feedforward net
dropout = .2
torch.manual_seed(7)
# mahabharata: https://github.com/kunjee17/mahabharata
with open('mahabharata.txt') as f:
text = f.read()
# getting the vocab, encoder and decoder to get the tokens
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = {ch:i for i, ch in enumerate(chars)}
itos = {i:ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# encoding the dataset and creating train and validation splits
data = torch.tensor(encode(text), dtype = torch.long)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
"""
returns a batch of dataset, depending on the split. returns the inputs x and the target y.
"""
data = train_data if split == "train" else val_data
ix = torch.randint(len(data)-block_size, (batch_size, ))
x = torch.stack([data[i: i+block_size] for i in ix])
y = torch.stack([data[i+1: i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
"""
returns the train and validation losses.
the loss is calculated as a mean over the batch.
the loss is calculated eval_iters number of times.
"""
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
"""
a single attention head to calculate the self attention
the idea is that at each token, you have a key, query and a value.
the key contains what the token contains
the query contains what the token is looking for
the value contains what it can communicate with other tokens
the query@key basically gives the affinities/relevances between tokens.
it is also divided by the square root of the context length/embedding dimension to stabilize the gradients as the sequence length grows.
it uses a masked fill on a lower triangular matrix, because in the bigram generative model,
we only want the past tokens to affect the generation of the next token. the future tokens do not contribute.
this is called ensuring causality. but in sentiment analysis models or translation models (any bidirectional models), we dont do this.
the forward pass computes scaled dot-product attention with masking.
basically, each token focuses on relevant parts of the sequence while respecting causality constraints in generative ai models.
output shape: (batch_size, context_size, head_size)
"""
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_emb_d, head_size, bias = False)
self.query = nn.Linear(n_emb_d, head_size, bias = False)
self.value = nn.Linear(n_emb_d, head_size, bias = False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x) # shape: (batch_size, context_size, head_size)
q = self.query(x) # shape: (batch_size, context_size, head_size)
wei = q @ k.transpose(-2, -1) * C**-0.5# (B, T, 16) @ (B, 16, T) --> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim = -1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
"""
multiple heads of attention modules in parallel to focus on different parts of the sequence.
the concatenated heads together contain information from different head together
but there is no integration between them. hence we need to project them together.
the concatenated heads are of shape: (batch_size, context_length, n_heads * head_size)
the n_heads * head_size is usually equal to the embedding dimension.
dropout prevents the model from being too resilient on a particular head.
output shape: (batch_size, context_length, embedding_dimension)
"""
def __init__(self, num_heads, head_size):
super().__init__ ()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_emb_d, n_emb_d)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim = -1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
"""
a simple feedforward network with a couple of linear layers and a dropout layer.
output shape: (batch_size, context_length, embedding_dimension)
"""
def __init__(self, n_emb_d):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_emb_d, 4 * n_emb_d),
nn.ReLU(),
nn.Linear(4 * n_emb_d, n_emb_d),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""
a single transformer block.
the x = x + ... is the residual connection.
the layer normalization is applied before the residual connection.
output shape: (batch_size, context_length, embedding_dimension)
"""
def __init__(self, n_emb_d, n_head):
super().__init__()
head_size = n_emb_d // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_emb_d)
self.ln1 = nn.LayerNorm(n_emb_d)
self.ln2 = nn.LayerNorm(n_emb_d)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPT(nn.Module):
"""
the GPT
"""
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_emb_d)
self.position_embedding_table = nn.Embedding(block_size, n_emb_d)
self.blocks = nn.Sequential(*[Block(n_emb_d, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_emb_d)
self.lm_head = nn.Linear(n_emb_d, vocab_size) #language_modelling_head
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
token_embeddings = self.token_embedding_table(idx) # shape: (batch_size, context_length_size, number_of_embedding_dimensions)
pos_embeddings = self.position_embedding_table(torch.arange(T, device=device)) # shape: (context_length_size, number_of_embedding_dimensions)
x = token_embeddings + pos_embeddings # shape: (batch_size, context_length_size, vocabulary_size). broadcasting involved
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x) # shape: (batch_size, context_length_size, vocabulary_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# generate max_new_tokens new indices and concatenate to idx
# idx is (B, T) array of indices. row is number of batches, and column is context length
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
# we only need the last value in the sequence to generate the next sequence, in this particular model
logits = logits[:, -1, :]
# getting the probabilites from the logits
probs = F.softmax(logits, dim = -1)
# sampling from the distrbution
idx_next = torch.multinomial(probs, num_samples = 1)
idx = torch.cat((idx, idx_next), dim = 1)
return idx
model = GPT()
m = model.to(device)
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3)
batch_size = 32
for iter in range(max_iters):
if iter%eval_interval == 0:
losses = estimate_loss()
print(f"step: {iter} train loss:{losses['train']:.4f} val loss:{losses['val']:.4f}")
xb, yb = get_batch('train')
logits, loss = m(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
context = torch.zeros((1, 1), dtype=torch.long, device=device)
open('output.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))