(Image from https://github.com/aarcosg/traffic-sign-detection/blob/master/test_images/image2.jpg)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 traffic-sign-detection.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 traffic-sign-detection.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 traffic-sign-detection.py --video VIDEO_PATH
By adding the --model_type
option, you can specify model type which is selected from "resnet50", "inception_resnet". (default is resnet50)
$ python3 traffic-sign-detection.py --model_type resnet50
Tensorflow
ONNX opset=11
faster_rcnn_resnet50.onnx.prototxt
faster_rcnn_inception_resnet_v2_atrous.onnx.prototxt