forked from oster/rtce-experiments-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 1
/
keywords.py
executable file
·229 lines (176 loc) · 8.7 KB
/
keywords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#! /opt/local/bin/python2.7 -tt
# -*- coding: utf-8 -*-
import os
import re
import sys
import unicodedata
import json
import gzip
from datetime import datetime, timedelta
import time
kw1 = [ 'Cloud Computing', 'directeur de recherche', 'Inria', 'responsable', 'équipe', 'Montpellier']
kw2 = [ 'concept novateur', 'enjeu(x)? économique(s)?', 'marché', '(cent|100) (milliard|md)(s)? de dollars',
'interface web', 'ressource(s)? (virtuellement )?infini(es)?', 'calcul', 'stockage', 'réseau(x)?', 'data( )?center',
'services', 'informatique dématérialisé(e)?', '(The)? Network (is )?(the )?Computer', 'réseau (est )?(l )?ordinateur',
'serveurs', 'puissance' ]
kw3 = [ 'catégorie', 'client', 'particulier', 'service', 'courrier(s)? électronique', 'agenda', 'document', 'travail collaboratif',
'entreprise', 'centre de donnée', 'petites( et)? moyennes', 'PME', 'moyens', 'ressources',
'Cloud (d )?infrastructure', 'IaaS', 'Infrastructure as a Service', 'ASP', 'Application Service Provider', 'fournisseur',
'Platform as a Service', 'PaaS', 'plat(e)?forme de calcul', 'API', 'Software as a Service', 'Google Apps Engine',
'développement' ]
kw4 = [ 'avantage', 'réduction', 'coût', 'PME', 'infrastructure', 'fournisseur', 'payer', 'consommer', 'mutualis(ation|e)',
'gestion', 'ressource', 'réduire', 'possession', 'opération', 'faciliter', 'utilisation', 'connexion',
'mobile', 'qualité', 'service', 'Cloud', 'élasticité', 'pic', 'charge', 'application', 'paiement', 'Noel',
'surcharge', 'puissance', 'calcul', 'stockage' ]
kw5 = [ 'grande(s)? entreprise', 'système', 'information', 'transactionnel', 'bancaire', 'réservation', 'décisionnelle', 'cohérence( des)? donnée',
'temps', 'réponse', 'protection( des)? donnée', 'opérateur', 'confiance', 'enjeu(x)?', 'Cloud Computing', 'interopérabilité', 'Microsoft',
'IBM', 'Google', 'Amazon', 'réseau(x)? sociau(x)?', 'compatib(le|ilité)', 'otage', 'fournisseur', 'standard', 'mettre', 'récupérer',
'confidentialité', 'Facebook', 'cloud', 'volume', 'donnée', 'passer( à)? (l )?échelle', 'architecture', 'Autonomic Computing', 'Green Computing',
'informatique verte', 'consommer', 'énergie', 'mutualis(ation|e)', 'ressource' ]
kw6 = [ 'programm(ation|er)', 'application', 'Cloud', 'industrie', 'communauté', 'recherche', 'système(s)? distribué', 'système(s)? (d )?exploitation',
'gestion (de )?donnée', 'réseau(x)? sociau', 'sociologue', 'Boom', 'langage(s)? (de )?(programmation)? déclaratif', 'base(s)? (de )?donnée' ]
delays = {
'001': 0,
'002': 4,
'003': 8,
'004': 4,
'005': 8,
'006': 0,
'007': 6,
'008': 6,
'009': 10,
'010': 10,
'012': 6,
'013': 10,
'014': 4,
'016': 8,
'017': 0,
'018': 4,
'019': 0,
'020': 8,
'021': 6,
'025': 10
}
def load_text_file(filename):
with open(filename, "r") as text_file:
text = text_file.read()
return text
def load_pad_revisions(db_file, padid):
with gzip.open(db_file, 'rb') as f:
revisions = []
pattern_rev_metadata = re.compile('{"key":"pad:'+padid+':revs:([0-9]+)"')
pattern_rev_data = re.compile('pad:'+padid)
while True:
try:
line = f.next()
match = pattern_rev_metadata.match(line)
if match:
rev = int(match.group(1)) #-> to int ?
rev_partA = json.loads(line)
rev_partB = json.loads(f.next())
if not pattern_rev_data.match(rev_partB['key']):
raise Exception('missing pad content for rev:%i' % (rev))
if rev_partB['val']['head'] != rev:
raise Exception( 'head (%i) does not match with current rev (%i)' % (rev_partB['val']['head'], rev))
revision = {}
revision['rev'] = rev
revision['timestamp'] = rev_partA['val']['meta']['timestamp']
revision['datetime'] = datetime.fromtimestamp(int(revision['timestamp']) / 1000)
revision['author'] = rev_partA['val']['meta']['author']
revision['content'] = rev_partB['val']['atext']['text']
revisions.append(revision)
except StopIteration:
break
return revisions
def format_time(timestamp):
return timestamp.strftime('%H:%M:%S')
def get_revision(revisions, revision_num):
return [ rev for rev in revisions if rev['rev'] == revision_num ][0]
def get_revision_at_time(revisions, certain_time):
return [ rev for rev in revisions if rev['datetime'] <= certain_time ][-1]
SPLIT_MARKERS = [ '1. Cloud computing - concept innovateur \(Utilisateur 1 \+ Utilisateur 2\)',
'2. Différents types de clouds et de clients \(Utilisateur 3 \+ Utilisateur 4\)',
'3. Les avantages de cloud \(Utilisateur 1 \+ Utilisateur 2\)',
'4. Les inconvénients de cloud \(Utilisateur 3 \+ Utilisateur 4\)',
'5. Sujets de recherche en cloud computing \(Utilisateur 1 \+ Utilisateur 2\)' ]
SPLIT_MARKERS = [ '1. Cloud computing - concept innovateur \(Utilisateur 1 \+ Utilisateur 2\)',
'2. Diff.rents types de clouds et de clients \(Utilisateur 3 \+ Utilisateur 4\)',
'3. Les avantages de cloud \(Utilisateur 1 \+ Utilisateur 2\)',
'4. Les inconv.nients de cloud \(Utilisateur 3 \+ Utilisateur 4\)',
'5. Sujets de recherche en cloud computing \(Utilisateur 1 \+ Utilisateur 2\)' ]
UNESCAPED_SPLIT_MARKERS = [ m.replace('\\','') for m in SPLIT_MARKERS ]
def remove_markers(some_text):
for marker in UNESCAPED_SPLIT_MARKERS:
#some_text = some_text.replace(marker, '')
some_text = re.sub(marker, '', some_text)
return some_text
def remove_accents(input_str):
nkfd_form = unicodedata.normalize('NFKD', input_str)
return u"".join([c for c in nkfd_form if not unicodedata.combining(c)])
def uniformize_and_clean(some_text):
some_text = some_text.decode(TEXT_ENCODING)
some_text = remove_markers(some_text)
some_text = some_text.lower()
# Remove accents (replaced with the corresponding non-accented character)
some_text = remove_accents(some_text)
# Separate most punctuation
some_text = re.sub(r"([^\w\.\'\-\/,&])", r' \1 ', some_text)
# Separate commas if they're followed by space.
# (E.g., don't separate 2,500)
some_text = re.sub(r"(,\s)", r' \1', some_text)
# Separate single quotes if they're followed by a space.
# some_text = re.sub(r"('\s)", r' \1', some_text)
# Separate single quotes
some_text = re.sub(r"(\w)'(\w)", r"\1 ' \2", some_text)
# Separate 'x/x' into 'x / x'
some_text = re.sub(r"(\w)/(\w)", r'\1 / \2', some_text)
# Separate periods that come before newline or end of string.
some_text = re.sub('\. *(\n|$)', ' . ', some_text)
# Remove 'punctuations' signs
some_text = re.sub('[\.\'\-\/,&>\*=\+\(\):;\"\'\[\]\?!$~\^\|]', '', some_text)
return some_text
def get_uniformized_keywords():
some_keywords = kw1 + kw2 + kw3 + kw4 + kw5 + kw6
some_keywords = [remove_accents(kw.decode(TEXT_ENCODING)).lower() for kw in some_keywords]
some_keywords = list(set(some_keywords))
return some_keywords
INPUT_DATA_PATH='./DATA-by-num/'
INPUT_DATA_JSON_FILE='./chat-slicing-data-notes.json'
TEXT_ENCODING="utf-8"
with open(INPUT_DATA_JSON_FILE, "r") as json_data_file:
data = json.loads(json_data_file.read())
print '; group, delay (in s.), matching_keywords, non_matching_keywords '
for group in sorted(data.keys()):
#for group in ['019']:
for experiment in data[group].keys():
if group == '014' and (experiment == "corrections" or experiment == "films"):
num = '015'
else:
num = group
revisions = load_pad_revisions(INPUT_DATA_PATH + num + '/dirty.db.gz', experiment + num)
initial_doc_rev_num = data[group][experiment]["init-rev"]
first_changes_rev_num = data[group][experiment]["first-change-rev"]
end_of_audio_rev_num = data[group][experiment]["end-of-audio-rev"]
initial_doc_rev = get_revision(revisions, initial_doc_rev_num)
first_changes_rev = get_revision(revisions, first_changes_rev_num)
end_of_audio_rev = get_revision(revisions, end_of_audio_rev_num)
# We consider only one revision at 5 minutes after end-of-audio
considered_revision = get_revision_at_time(revisions, end_of_audio_rev['datetime'] + timedelta(minutes=5))
text = considered_revision['content'].encode(TEXT_ENCODING)
text = uniformize_and_clean(text)
# Check if there still exist some non-words characters
non_word_characters = set(re.sub('[A-Za-z0-9\s]', '', text))
if (len(non_word_characters) > 0):
print 'WARNING: seems that there are still some unexpected non-in-a-word characters - ', non_word_characters
text = re.sub('\s+', ' ', text)
ok = 0
pas_ok = 0
keywords = get_uniformized_keywords()
for kw in keywords:
pattern = re.compile(kw)
if (pattern.search(text)):
ok = ok + 1
else:
pas_ok = pas_ok + 1
#print '***', kw
print ",".join(map(lambda x: str(x), [int(num), delays[num], ok, pas_ok]))