-
Notifications
You must be signed in to change notification settings - Fork 4k
/
Bi-LSTM.py
77 lines (60 loc) · 2.6 KB
/
Bi-LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# %%
# code by Tae Hwan Jung @graykode
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
def make_batch():
input_batch = []
target_batch = []
words = sentence.split()
for i, word in enumerate(words[:-1]):
input = [word_dict[n] for n in words[:(i + 1)]]
input = input + [0] * (max_len - len(input))
target = word_dict[words[i + 1]]
input_batch.append(np.eye(n_class)[input])
target_batch.append(target)
return input_batch, target_batch
class BiLSTM(nn.Module):
def __init__(self):
super(BiLSTM, self).__init__()
self.lstm = nn.LSTM(input_size=n_class, hidden_size=n_hidden, bidirectional=True)
self.W = nn.Linear(n_hidden * 2, n_class, bias=False)
self.b = nn.Parameter(torch.ones([n_class]))
def forward(self, X):
input = X.transpose(0, 1) # input : [n_step, batch_size, n_class]
hidden_state = torch.zeros(1*2, len(X), n_hidden) # [num_layers(=1) * num_directions(=2), batch_size, n_hidden]
cell_state = torch.zeros(1*2, len(X), n_hidden) # [num_layers(=1) * num_directions(=2), batch_size, n_hidden]
outputs, (_, _) = self.lstm(input, (hidden_state, cell_state))
outputs = outputs[-1] # [batch_size, n_hidden]
model = self.W(outputs) + self.b # model : [batch_size, n_class]
return model
if __name__ == '__main__':
n_hidden = 5 # number of hidden units in one cell
sentence = (
'Lorem ipsum dolor sit amet consectetur adipisicing elit '
'sed do eiusmod tempor incididunt ut labore et dolore magna '
'aliqua Ut enim ad minim veniam quis nostrud exercitation'
)
word_dict = {w: i for i, w in enumerate(list(set(sentence.split())))}
number_dict = {i: w for i, w in enumerate(list(set(sentence.split())))}
n_class = len(word_dict)
max_len = len(sentence.split())
model = BiLSTM()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
input_batch, target_batch = make_batch()
input_batch = torch.FloatTensor(input_batch)
target_batch = torch.LongTensor(target_batch)
# Training
for epoch in range(10000):
optimizer.zero_grad()
output = model(input_batch)
loss = criterion(output, target_batch)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
predict = model(input_batch).data.max(1, keepdim=True)[1]
print(sentence)
print([number_dict[n.item()] for n in predict.squeeze()])