-
Notifications
You must be signed in to change notification settings - Fork 1
/
qhadamw.py
133 lines (108 loc) · 5.12 KB
/
qhadamw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim.optimizer import Optimizer
class QHAdamW(Optimizer):
r"""
Combines the weight decay decoupling from AdamW (Decoupled Weight Decay Regularization. Loshchilov and Hutter, 2019)
with QHAdam (Quasi-hyperbolic momentum and Adam for deep learning. Ma and Yarats, 2019).
Args:
params (iterable):
iterable of parameters to optimize or dicts defining parameter
groups
lr (float, optional): learning rate (:math:`\alpha` from the paper)
(default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of the gradient and its square
(default: (0.995, 0.999))
nus (Tuple[float, float], optional): immediate discount factors used to
estimate the gradient and its square
(default: (0.7, 1.0))
eps (float, optional): term added to the denominator to improve
numerical stability
(default: 1e-8)
weight_decay (float, optional): weight decay
(L2 regularization coefficient, times two)
(default: 0.0)
Example:
>>> optimizer = QHAdamW(
... model.parameters(),
... lr=3e-4, nus=(0.8, 1.0), betas=(0.99, 0.999))
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
QHAdam paper:
.. _`(Ma and Yarats, 2019)`: https://arxiv.org/abs/1810.06801
AdamW paper:
.. _`(Loshchilov and Hutter, 2019)`: https://arxiv.org/abs/1711.05101
"""
def __init__(self, params, lr=1e-3, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-8):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = {"lr": lr, "betas": betas, "nus": nus, "weight_decay": weight_decay, "eps": eps}
super(QHAdamW, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional):
A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
lr = group["lr"]
beta1, beta2 = group["betas"]
nu1, nu2 = group["nus"]
weight_decay = group["weight_decay"]
eps = group["eps"]
for p in group["params"]:
if p.grad is None:
continue
d_p = p.grad.data
if d_p.is_sparse:
raise RuntimeError("QHAdamW does not support sparse gradients")
param_state = self.state[p]
# Original QHAdam implementation for weight decay:
# if weight_decay != 0:
# d_p.add_(weight_decay, p.data)
d_p_sq = d_p.mul(d_p)
if len(param_state) == 0:
param_state["beta1_weight"] = 0.0
param_state["beta2_weight"] = 0.0
param_state["exp_avg"] = torch.zeros_like(p.data)
param_state["exp_avg_sq"] = torch.zeros_like(p.data)
param_state["beta1_weight"] = 1.0 + beta1 * param_state["beta1_weight"]
param_state["beta2_weight"] = 1.0 + beta2 * param_state["beta2_weight"]
beta1_weight = param_state["beta1_weight"]
beta2_weight = param_state["beta2_weight"]
exp_avg = param_state["exp_avg"]
exp_avg_sq = param_state["exp_avg_sq"]
beta1_adj = 1.0 - (1.0 / beta1_weight)
beta2_adj = 1.0 - (1.0 / beta2_weight)
exp_avg.mul_(beta1_adj).add_(1.0 - beta1_adj, d_p)
exp_avg_sq.mul_(beta2_adj).add_(1.0 - beta2_adj, d_p_sq)
avg_grad = exp_avg.mul(nu1)
if nu1 != 1.0:
avg_grad.add_(1.0 - nu1, d_p)
avg_grad_rms = exp_avg_sq.mul(nu2)
if nu2 != 1.0:
avg_grad_rms.add_(1.0 - nu2, d_p_sq)
avg_grad_rms.sqrt_()
if eps != 0.0:
avg_grad_rms.add_(eps)
# Original QHAdam implementation:
# p.data.addcdiv_(-lr, avg_grad, avg_grad_rms)
# Implementation following AdamW paper:
p.data.add_(-weight_decay, p.data).addcdiv_(-lr, avg_grad, avg_grad_rms)
return loss