-
Notifications
You must be signed in to change notification settings - Fork 35
/
explanatory_contextual_retrieval.py
197 lines (157 loc) · 7.5 KB
/
explanatory_contextual_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# experiments/explanatory_contextual_retrieval.py
#
# a simple example with a trivial piece of text to showcase the late chunking method against
# contextual retrieval method. contextual retrieval manually inserts context to each
# chunk, i.e. forces context to be around each chunk. so works as a good comparison
# to late chunking to see if the similarities are similar (which they appear to be)
from chunked_pooling.wrappers import load_model
from transformers import AutoModel, AutoTokenizer, pipeline, AutoModelForCausalLM
import torch
import numpy as np
import chunked_pooling
from chunked_pooling import chunked_pooling
from chunked_pooling.chunking import Chunker
from typing import List, Tuple
from transformers import AutoModel, AutoTokenizer, pipeline
import requests
import os
def request_anthropic_api(prompt: str):
url = "https://api.anthropic.com/v1/messages"
headers = {
"x-api-key": os.getenv("ANTHROPIC_API_KEY"),
"anthropic-version": "2023-06-01",
"content-type": "application/json"
}
data = {
"model": "claude-3-haiku-20240307",
"max_tokens": 2048,
"messages": [
{"role": "user", "content": prompt}
]
}
response = requests.post(url, headers=headers, json=data)
return response.json()["content"][0]["text"]
def setup_local_llm(llm_name):
model = AutoModelForCausalLM.from_pretrained(llm_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(llm_name, trust_remote_code=True)
def llm(prompt):
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to(model.device)
outputs = model.generate(inputs, max_new_tokens=512)
text_output = tokenizer.batch_decode(outputs)[0]
if "<|assistant|>" in text_output:
text_output = text_output.split("<|assistant|>")[1].strip()
return text_output
return llm
def cosine_similarity(vector1, vector2):
vector1_norm = vector1 / np.linalg.norm(vector1)
vector2_norm = vector2 / np.linalg.norm(vector2)
return np.dot(vector1_norm, vector2_norm)
class LateChunkingEmbedder:
def __init__(self,
model: AutoModel,
tokenizer: AutoTokenizer,
chunking_strategy: str = "sentences",
n_sentences: int = 1
):
self.model = model
self.tokenizer = tokenizer
self.chunker = Chunker(chunking_strategy = chunking_strategy)
self.n_sentences = n_sentences
def run(self, document: str):
annotations = [self.chunker.chunk(text=document, tokenizer=self.tokenizer, n_sentences=self.n_sentences)]
model_inputs = self.tokenizer(
document,
return_tensors='pt',
padding=True,
truncation=True,
max_length=8192,
)
model_outputs = self.model(**model_inputs)
self.output_embs = chunked_pooling(
model_outputs, annotations, max_length=8192,
)[0]
return self.output_embs
def query(self, query: str):
if "output_embs" not in dir(self):
raise ValueError("no embeddings calculated, use .run(document) to create chunk embeddings")
query_embedding = self.model.encode(query)
similarities = []
for emb in self.output_embs:
similarities.append(cosine_similarity(query_embedding, emb))
return similarities
class ContextualRetrievalEmbedder():
def __init__(self,
model: AutoModel,
tokenizer: AutoTokenizer,
llm_name: str = "microsoft/Phi-3.5-mini-instruct",
chunking_strategy: str = "fixed"
):
self.llm = setup_local_llm(llm_name)
# self.llm = request_anthropic_api
self.prompt = """
<document>
{{WHOLE_DOCUMENT}}
</document>
Here is the chunk we want to situate within the whole document
<chunk>
{{CHUNK_CONTENT}}
</chunk>
Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else.
""".strip()
self.model = model
self.tokenizer = tokenizer
self.chunker = Chunker(chunking_strategy = chunking_strategy)
def _add_context(self, chunk: str, document: str):
prompt = self.prompt.replace("{{WHOLE_DOCUMENT}}", document).replace("{{CHUNK_CONTENT}}", chunk)
extra_context = self.llm(prompt)
return extra_context + " " + chunk
def _tokens_to_text(self, text: str, annotations: List[Tuple[int, int]]):
tokens = self.tokenizer.encode_plus(
text, return_offsets_mapping=True, add_special_tokens=False
)
token_offsets = tokens.offset_mapping
chunks = []
for start, end in annotations:
chunk = text[token_offsets[start][0]:token_offsets[end-1][1]]
chunks.append(chunk)
return chunks
def run(self, document: str):
annotations = [self.chunker.chunk(text=document, tokenizer=self.tokenizer, n_sentences=1)]
self.chunks = self._tokens_to_text(text=document, annotations=annotations[0])
self.chunks = [self._add_context(chunk, document) for chunk in self.chunks]
model_outputs = self.model.encode(self.chunks)
self.output_embs = [model_outputs[i, :] for i in range(len(self.chunks))]
return self.output_embs
def query(self, query: str):
if "output_embs" not in dir(self):
raise ValueError("no embeddings calculated, use .run(document) to create chunk embeddings")
query_embedding = self.model.encode(query)
similarities = []
for emb in self.output_embs:
similarities.append(cosine_similarity(query_embedding, emb))
return similarities
if __name__ == "__main__":
text = """
The recent SEC filing provided insights into ACME Corp's performance for Q2 2023.
It highlighted a 3% revenue growth over the previous quarter.
The company, which had a revenue of $314 million in the prior quarter, showed steady progress.
They attributed this growth to strategic initiatives and operational efficiencies.
The report emphasized the company's resilience and ability to navigate market challenges, reflecting positively on their financial health and future prospects.
""".strip().replace("\n", "")
llm_model_name = "microsoft/Phi-3.5-mini-instruct"
embedding_model_name = "jinaai/jina-embeddings-v2-small-en"
embedding_model, has_instructions = load_model(embedding_model_name)
embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name, trust_remote_code=True)
cr = ContextualRetrievalEmbedder(embedding_model, embedding_tokenizer, llm_model_name, chunking_strategy="sentences")
cr.run(text);
cr_cosine_similarities = cr.query("What is ACME Corp's revenue growth for Q2 2023?")
lc = LateChunkingEmbedder(embedding_model, embedding_tokenizer)
lc.run(text)
lc_cosine_similarities = lc.query("What is ACME Corp's revenue growth for Q2 2023?")
# import pandas as pd
for i, (cr_similarity, lc_similarity) in enumerate(zip(cr_cosine_similarities, lc_cosine_similarities)):
print(f"{text.split('.')[:-1][i].strip()}")
print(f"Similarities: Contextual Retrieval: {cr_similarity:.4f} | Late Chunking: {lc_similarity:.4f}")
print("")