Skip to content

lorenzMuller/kernelNet_MovieLens

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

kernelNet MovieLens-1M

State of the art model for MovieLens-1M.

This is a minimal implementation of a kernelNet sparsified autoencoder for MovieLens-1M. See http://proceedings.mlr.press/v80/muller18a.html

Setup

Download this repository

Requirements

  • numpy
  • scipy
  • tensorflow (tested with version 1.13)

Dataset

Expects MovieLens-1M dataset in a subdirectory named ml-1m. Get it here https://grouplens.org/datasets/movielens/1m/

or on linux run in the project directory

wget --output-document=ml-1m.zip http://www.grouplens.org/system/files/ml-1m.zip; unzip ml-1m.zip

Run

python kernelNet_ml1m.py optional arguments are the L2 and sparsity regularization strength. Default is 60. and 0.013

Results

with the default parameters this slightly outperforms the paper model at 0.823 validation RMSE (10-times repeated random sub-sampling validation)

Releases

No releases published

Packages

No packages published

Languages