[Issue]: <title> ’Incremental index‘ command does not generate lancedb files #1560
Open
3 tasks done
Labels
triage
Default label assignment, indicates new issue needs reviewed by a maintainer
Do you need to file an issue?
Describe the issue
'graphrag index command' generates lanceDB vector files, but 'incremental index command' does not produce vector files. How can one use the graphrag tool to generate lanceDB files from the files of incremental index command? If lancedb files are not generated, how can one perform local and global searches using the existing files from incremental index command?"
Steps to reproduce
'graphrag index command' generates lanceDB vector files, but 'incremental index command' does not produce vector files. How can one use the graphrag tool to generate lanceDB files from the files of incremental index command? If lancedb files are not generated, how can one perform local and global searches using the existing files from incremental index command?"
GraphRAG Config Used
This config file contains required core defaults that must be set, along with a handful of common optional settings.
For a full list of available settings, see https://microsoft.github.io/graphrag/config/yaml/
LLM settings
There are a number of settings to tune the threading and token limits for LLM calls - check the docs.
encoding_model: cl100k_base # this needs to be matched to your model!
llm:
api_key: ${GRAPHRAG_API_KEY} # set this in the generated .env file
type: openai_chat # or azure_openai_chat
model: gpt-4o-mini
model_supports_json: true # recommended if this is available for your model.
audience: "https://cognitiveservices.azure.com/.default"
api_base: https://.openai.azure.com
api_version: 2024-02-15-preview
organization: <organization_id>
deployment_name: <azure_model_deployment_name>
parallelization:
stagger: 0.3
num_threads: 50
async_mode: threaded # or asyncio
embeddings:
async_mode: threaded # or asyncio
vector_store:
type: lancedb
db_uri: 'output/lancedb'
container_name: default
overwrite: true
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: text-embedding-3-small
# api_base: https://.openai.azure.com
# api_version: 2024-02-15-preview
# audience: "https://cognitiveservices.azure.com/.default"
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
Input settings
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\.txt$"
chunks:
size: 1200
overlap: 100
group_by_columns: [id]
Storage settings
If blob storage is specified in the following four sections,
connection_string and container_name must be provided
cache:
type: file # or blob
base_dir: "cache"
reporting:
type: file # or console, blob
base_dir: "logs"
storage:
type: file # or blob
base_dir: "update_hali-11-20"
only turn this on if running
graphrag index
with custom settingswe normally use
graphrag update
with the defaultsupdate_index_storage:
#type: file # or blob
#base_dir: "update_output_21-30"
Workflow settings
skip_workflows: []
entity_extraction:
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 1
summarize_descriptions:
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
enabled: false
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 1
community_reports:
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
embeddings: false
transient: false
Query settings
The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.
See the config docs: https://microsoft.github.io/graphrag/config/yaml/#query
local_search:
prompt: "prompts/local_search_system_prompt.txt"
global_search:
map_prompt: "prompts/global_search_map_system_prompt.txt"
reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"
knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"
drift_search:
prompt: "prompts/drift_search_system_prompt.txt"
Logs and screenshots
Additional Information
The text was updated successfully, but these errors were encountered: