In this example, you will fine-tune a 90% pruned BERT model onto some token classification datasets using SparseML's CLI.
Sparse Transfer Learning is very similiar to the typical transfer learing process used to train NLP models, where we fine-tune a pretrained checkpoint onto a smaller downstream dataset. With Sparse Transfer Learning, we simply start the fine-tuning process from a pre-sparsified checkpoint and maintain sparsity while the training process occurs.
SparseZoo, Neural Magic's open source repository of pre-sparsified models, contains a 90% pruned version of BERT, which has been sparsified on the upstream Wikipedia and BookCorpus datasets with the masked language modeling objective. We will use this model as the starting point for the transfer learning process.
In this tutorial, you will learn how to:
- Sparse Transfer Learn onto Conll2003
- Sparse Transfer Learn onto a Custom Dataset (WNut17)
- Sparse Transfer Learn with a Custom Teacher
Install SparseML via pip
:
pip install sparseml[transformers]
SparseML's CLI offers pre-made training pipelines for common NLP tasks, including token classification.
The CLI enables you to kick-off training runs with various utilities like dataset loading and pre-processing, checkpoint saving, metric reporting, and logging handled for you.
All we have to do is pass a couple of key arguments:
--model_name_or_path
specifies the starting checkpoint to load for training--dataset_name
specifies a Hugging Face dataset to train with--recipe
specifies path a recipe to use to apply sparsification algorithms or sparse transfer learning to the model. For Sparse Transfer Learning, we will use a recipe that instructs SparseML to maintain sparsity during the training process and to apply quantization over the final few epochs.
To launch a Sparse Transfer Learning run, we first need to create a Sparse Transfer Learning recipe.
Recipes are YAML files that specify sparsity related algorithms and hyper-parameters. SparseML parses the recipes and updates the training loops to apply the specified sparsification algorithms to the model.
In the case of Conll2003, there is a premade recipe from the SparseZoo:
version: 1.1.0
# General Variables
num_epochs: 13
init_lr: 1.5e-4
final_lr: 0
qat_start_epoch: 8.0
observer_epoch: 12.0
quantize_embeddings: 1
distill_hardness: 1.0
distill_temperature: 2.0
# Modifiers:
training_modifiers:
- !EpochRangeModifier
end_epoch: eval(num_epochs)
start_epoch: 0.0
- !LearningRateFunctionModifier
start_epoch: 0
end_epoch: eval(num_epochs)
lr_func: linear
init_lr: eval(init_lr)
final_lr: eval(final_lr)
quantization_modifiers:
- !QuantizationModifier
start_epoch: eval(qat_start_epoch)
disable_quantization_observer_epoch: eval(observer_epoch)
freeze_bn_stats_epoch: eval(observer_epoch)
quantize_embeddings: eval(quantize_embeddings)
quantize_linear_activations: 0
exclude_module_types: ['LayerNorm']
submodules:
- bert.embeddings
- bert.encoder
- classifier
distillation_modifiers:
- !DistillationModifier
hardness: eval(distill_hardness)
temperature: eval(distill_temperature)
distill_output_keys: [logits]
constant_modifiers:
- !ConstantPruningModifier
start_epoch: 0.0
params: __ALL_PRUNABLE__
The Modifiers
are the important items that encode how SparseML should modify the training process for Sparse Transfer Learning:
ConstantPruningModifier
tells SparseML to pin weights at 0 over all epochs, maintaining the sparsity structure of the networkQuantizationModifier
tells SparseML to quanitze the weights with quantization aware training over the last 5 epochsDistillationModifier
tells SparseML how to apply distillation during the training process, targeting the logits
SparseML parses the modifiers and updates the training process to implement the algorithms and hyperparameters specified in the recipes.
You can download the recipe with the following code:
from sparsezoo import Model
transfer_stub = "zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none"
download_dir = "./transfer_recipe"
zoo_model = Model(transfer_stub, download_path=download_dir)
recipe_path = zoo_model.recipes.default.path
print(recipe_path)
With the recipe and starting sparse checkpoint identified, we can kick off the fine-tuning with the following:
sparseml.transformers.train.token_classification \
--model_name_or_path zoo:nlp/masked_language_modeling/obert-base/pytorch/huggingface/wikipedia_bookcorpus/pruned90-none \
--recipe zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none \
--distill_teacher zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/base-none \
--dataset_name conll2003 \
--output_dir sparse_bert-token_classification_conll2003 \
--per_device_train_batch_size 32 --per_device_eval_batch_size 32 --preprocessing_num_workers 6 \
--do_train --do_eval --evaluation_strategy epoch --fp16 --seed 29204 \
--save_strategy epoch --save_total_limit 1
Let's discuss the key arguments:
-
--dataset_name conll2003
instructs SparseML to download and fine-tune onto the Conll2003 dataset. The script automatically downloads the dataset from the Hugging Face hub. -
--model_name_or_path zoo:nlp/masked_language_modeling/obert-base/pytorch/huggingface/wikipedia_bookcorpus/pruned90-none
specifies the starting checkpoint for the fine tuning. Here, we passed a SparseZoo stub identifying the 90% pruned version of BERT trained with masked language modeling, which SparseML downloads when the script starts. -
--recipe zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none
specifies the recipe to be applied by SparseML. Here, we passed a SparseZoo stub identifying the transfer learning recipe for the Conll2003 dataset, which SparseML downloads when the script starts. See below for the details of what this recipe looks like. -
--distill_teacher zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/base-none
is an optional argument that specifies a model to use for as a teacher to apply distillation during the training process. We passed a SparseZoo stub identifying a dense BERT model trained on Conll2003, which SparseML downloads when the script starts.
The model trains for 13 epochs, converging to ~98.5% accuracy on the validation set. Because we applied a sparse transfer recipe, which instructs SparseML to maintain the sparsity of the starting pruned checkpoint and apply quantization, the final model is 90% pruned and quantized!
Once you have trained your model, export to ONNX in order to deploy with DeepSparse with th following:
sparseml.transformers.export_onnx \
--model_path ./sparse_bert-token_classification_conll2003 \
--task token_classification
A deployment
folder is created in your local directory, which has all of the files needed for deployment with DeepSparse including the model.onnx
, config.json
, and tokenizer.json
files.
Beyond the Conll2003 dataset, we can also use a dataset from the Hugging Face Hub or from local files. Let's try an example of each for the sentiment analysis using WNUT_17, which is also a NER task.
For simplicity, we will perform the fine-tuning without distillation. Although the transfer learning recipe contains distillation
modifiers, by setting --distill_teacher disable
we instruct SparseML to skip distillation.
Run the following to inspect the Rotten Tomatoes dataset.
from datasets import load_dataset
wnut_17 = load_dataset("wnut_17")
print(wnut_17)
print(wnut_17["train"][0])
# > {'id': '0', 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'], 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0]}
We can see that each row contains a tokens
field which contains a list of strings representing each word the sentence and a corresponding ner_tags
which is a list of integers representing the tag of each word in the sentence.
To use this dataset with the CLI, we can replace the --dataset_name conll2003
argument with --dataset_name wnut_17 --input_column_names tokens --label_column_name ner_tags
. SparseML will then download the dataset from the Hugging Face hub and run training as before.
sparseml.transformers.token_classification \
--model_name_or_path zoo:nlp/masked_language_modeling/obert-base/pytorch/huggingface/wikipedia_bookcorpus/pruned90-none \
--recipe zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none \
--recipe_args '{"num_epochs":12,"qat_start_epoch":7.0, "observer_epoch": 11.0}' \
--distill_teacher disable \
--dataset_name wnut_17 --text_column_name tokens --label_column_name ner_tags \
--output_dir sparse_bert-token_classification_wnut_17 \
--per_device_train_batch_size 32 --per_device_eval_batch_size 32 --preprocessing_num_workers 6 \
--do_train --do_eval --evaluation_strategy epoch --fp16 --seed 29204 \
--save_strategy epoch --save_total_limit 1
You will notice that we used the same recipe as we did in the Conll2003 case (identified by the SparseZoo stub zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none
). Since the WNUT and Conll2003 tasks are similiar, we chose to start with the same hyperparameters as we used in Conll2003 training.
To update a recipe and experiment with hyperparameters, you can download the YAML file from SparseZoo, make updates to the YAML directly, and pass the local path to SparseML.
Alternatively, you can use --recipe_args
to modify the recipe on the fly. In this case, we used the following to run for 12 epochs instead of 13:
--recipe_args '{"num_epochs":12,"qat_start_epoch":7.0, "observer_epoch": 11.0}'
Let's walk through how to pass a JSON dataset to the CLI.
We use Hugging Face datasets
to create a JSON file for WNUT_17 that can be passed to SparseML's CLI.
For the Token Classification CLI, the label column must contain actual tags (i.e. not indexes). As such, we need to map the NER ids to tags before saving to JSON.
Run the following to create the JSON files:
from datasets import load_dataset
from pprint import pprint
dataset = load_dataset("wnut_17")
print(dataset)
print(dataset["train"][0])
label_list = dataset["train"].features["ner_tags"].feature.names
print(label_list)
named_labels = []
for i in range(len(dataset["train"])):
named_labels_i = [label_list[label_idx] for label_idx in dataset["train"][i]["ner_tags"]]
named_labels.append(named_labels_i)
eval_named_labels = []
for i in range(len(dataset["validation"])):
named_labels_i = [label_list[label_idx] for label_idx in dataset["validation"][i]["ner_tags"]]
eval_named_labels.append(named_labels_i)
dataset["train"] = dataset["train"].add_column("named_ner_tags", named_labels)
dataset["validation"] = dataset["validation"].add_column("named_ner_tags", eval_named_labels)
dataset["train"] = dataset["train"].remove_columns("ner_tags")
dataset["validation"] = dataset["validation"].remove_columns("ner_tags")
dataset["train"].to_json("./wnut_17-train.json")
dataset["validation"].to_json("./wnut_17-validation.json")
We can see that the data is a JSON file with tokens
and named_ner_tags
.
head ./wnut_17-train.json --lines=5
Output:
{"id":"0","tokens":["@paulwalk","It","'s","the","view","from","where","I","'m","living","for","two","weeks",".","Empire","State","Building","=","ESB",".","Pretty","bad","storm","here","last","evening","."],"named_ner_tags":["O","O","O","O","O","O","O","O","O","O","O","O","O","O","B-location","I-location","I-location","O","B-location","O","O","O","O","O","O","O","O"]}
{"id":"1","tokens":["From","Green","Newsfeed",":","AHFA","extends","deadline","for","Sage","Award","to","Nov",".","5","http:\/\/tinyurl.com\/24agj38"],"named_ner_tags":["O","O","O","O","B-group","O","O","O","O","O","O","O","O","O","O"]}
{"id":"2","tokens":["Pxleyes","Top","50","Photography","Contest","Pictures","of","August","2010","...","http:\/\/bit.ly\/bgCyZ0","#photography"],"named_ner_tags":["B-corporation","O","O","O","O","O","O","O","O","O","O","O"]}
{"id":"3","tokens":["today","is","my","last","day","at","the","office","."],"named_ner_tags":["O","O","O","O","O","O","O","O","O"]}
{"id":"4","tokens":["4Dbling","'s","place","til","monday",",","party","party","party",".","<","3"],"named_ner_tags":["B-person","O","O","O","O","O","O","O","O","O","O","O"]}
To use the local files with the CLI, pass --train_file ./wnut_17-train.json --validation_file ./wnut_17-validation.json --text_column_name tokens --label_column_name named_ner_tags
.
Run the following:
sparseml.transformers.token_classification \
--model_name_or_path zoo:nlp/masked_language_modeling/obert-base/pytorch/huggingface/wikipedia_bookcorpus/pruned90-none \
--recipe zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none \
--distill_teacher disable \
--train_file wnut_17-train.json --validation_file wnut_17-validation.json \
--text_column_name tokens --label_column_name named_ner_tags \
--output_dir sparse_bert-token_classification_wnut_17_from_json \
--per_device_train_batch_size 32 --per_device_eval_batch_size 32 --preprocessing_num_workers 6 \
--do_train --do_eval --evaluation_strategy epoch --fp16 --seed 29204 \
--save_strategy epoch --save_total_limit 1
To increase accuracy, we can apply model distillation from a dense teacher model, just like we did for the Conll2003 case. You are free to use the native Hugging Face workflows to train the dense teacher model (and can even pass a Hugging Face model identifier to the --distill_teacher argument), but can also use the SparseML CLI.
Run the follwing to train a dense model on WNUT (using the data files from above):
sparseml.transformers.token_classification \
--model_name_or_path zoo:nlp/masked_language_modeling/obert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
--recipe zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/base-none \
--distill_teacher disable \
--train_file wnut_17-train.json --validation_file wnut_17-validation.json \
--text_column_name tokens --label_column_name named_ner_tags \
--output_dir wnut_dense_teacher \
--per_device_train_batch_size 32 --per_device_eval_batch_size 32 --preprocessing_num_workers 6 \
--do_train --do_eval --evaluation_strategy epoch --fp16 --seed 29204 \
--save_strategy epoch --save_total_limit 1
Note that used the dense version of BERT (the stub ends in base-none) as the starting point for the training and passed a recipe from SparseZoo which was used to train the dense teacher for the Conll2003 task. Since the Conll2003 task is similiar to the WNUT task, these parameters are a solid place to start. This recipe contains no sparsity related modifiers and only controls the learning rate and number of epochs. As such, the script will run typical fine-tuning, resulting in a dense model.
Here is what the recipe looks like:
version: 1.1.0
# General Variables
num_epochs: 4
init_lr: 5e-5
final_lr: 0
# Modifiers:
training_modifiers:
- !EpochRangeModifier
end_epoch: eval(num_epochs)
start_epoch: 0.0
- !LearningRateFunctionModifier
start_epoch: 0
end_epoch: eval(num_epochs)
lr_func: linear
init_lr: eval(init_lr)
final_lr: eval(final_lr)
With the dense teacher trained, we can sparse transfer learn with the help of the teacher by passing a local path to the model checkpoint. In this case, we use --distill_teacher ./wnut_dense_teacher
.
Run the following to kick off training:
sparseml.transformers.token_classification \
--model_name_or_path zoo:nlp/masked_language_modeling/obert-base/pytorch/huggingface/wikipedia_bookcorpus/pruned90-none \
--recipe zoo:nlp/token_classification/obert-base/pytorch/huggingface/conll2003/pruned90_quant-none \
--recipe_args '{"num_epochs": 10, "qat_start_epoch": 5.0, "observer_epoch": 9.0}' \
--distill_teacher ./wnut_dense_teacher \
--train_file wnut_17-train.json --validation_file wnut_17-validation.json \
--text_column_name tokens --label_column_name named_ner_tags \
--output_dir wnut_sparse_with_teacher \
--per_device_train_batch_size 32 --per_device_eval_batch_size 32 --preprocessing_num_workers 6 \
--do_train --do_eval --evaluation_strategy epoch --fp16 --seed 29204 \
--save_strategy epoch --save_total_limit 1
The resulting model is 90% pruned and quantized.