forked from FeatureBaseDB/featurebase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fragment.go
1708 lines (1430 loc) · 41.2 KB
/
fragment.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2017 Pilosa Corp.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pilosa
import (
"archive/tar"
"bufio"
"bytes"
"container/heap"
"context"
"crypto/sha1"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"io/ioutil"
"log"
"os"
"sort"
"sync"
"syscall"
"time"
"unsafe"
"math"
"github.com/gogo/protobuf/proto"
"github.com/pilosa/pilosa/internal"
"github.com/pilosa/pilosa/roaring"
)
const (
// SliceWidth is the number of column IDs in a slice.
SliceWidth = 1048576
// SnapshotExt is the file extension used for an in-process snapshot.
SnapshotExt = ".snapshotting"
// CopyExt is the file extension used for the temp file used while copying.
CopyExt = ".copying"
// CacheExt is the file extension for persisted cache ids.
CacheExt = ".cache"
// HashBlockSize is the number of rows in a merkle hash block.
HashBlockSize = 100
)
const (
// DefaultFragmentMaxOpN is the default value for Fragment.MaxOpN.
DefaultFragmentMaxOpN = 2000
)
// Fragment represents the intersection of a frame and slice in an index.
type Fragment struct {
mu sync.Mutex
// Composite identifiers
index string
frame string
view string
slice uint64
// File-backed storage
path string
file *os.File
storage *roaring.Bitmap
storageData []byte
opN int // number of ops since snapshot
// Cache for row counts.
CacheType string // passed in by frame
cache Cache
CacheSize uint32
// Stats reporting.
maxRowID uint64
// Cache containing full rows (not just counts).
rowCache BitmapCache
// Cached checksums for each block.
checksums map[int][]byte
// Number of operations performed before performing a snapshot.
// This limits the size of fragments on the heap and flushes them to disk
// so that they can be mmapped and heap utilization can be kept low.
MaxOpN int
// Writer used for out-of-band log entries.
LogOutput io.Writer
// Row attribute storage.
// This is set by the parent frame unless overridden for testing.
RowAttrStore *AttrStore
stats StatsClient
}
// NewFragment returns a new instance of Fragment.
func NewFragment(path, index, frame, view string, slice uint64) *Fragment {
return &Fragment{
path: path,
index: index,
frame: frame,
view: view,
slice: slice,
CacheType: DefaultCacheType,
CacheSize: DefaultCacheSize,
LogOutput: ioutil.Discard,
MaxOpN: DefaultFragmentMaxOpN,
stats: NopStatsClient,
}
}
// Path returns the path the fragment was initialized with.
func (f *Fragment) Path() string { return f.path }
// CachePath returns the path to the fragment's cache data.
func (f *Fragment) CachePath() string { return f.path + CacheExt }
// Index returns the index that the fragment was initialized with.
func (f *Fragment) Index() string { return f.index }
// Frame returns the frame the fragment was initialized with.
func (f *Fragment) Frame() string { return f.frame }
// View returns the view the fragment was initialized with.
func (f *Fragment) View() string { return f.view }
// Slice returns the slice the fragment was initialized with.
func (f *Fragment) Slice() uint64 { return f.slice }
// Cache returns the fragment's cache.
// This is not safe for concurrent use.
func (f *Fragment) Cache() Cache { return f.cache }
// Open opens the underlying storage.
func (f *Fragment) Open() error {
f.mu.Lock()
defer f.mu.Unlock()
if err := func() error {
// Initialize storage in a function so we can close if anything goes wrong.
if err := f.openStorage(); err != nil {
return err
}
// Fill cache with rows persisted to disk.
if err := f.openCache(); err != nil {
return err
}
// Clear checksums.
f.checksums = make(map[int][]byte)
// Read last bit to determine max row.
pos := f.storage.Max()
f.maxRowID = pos / SliceWidth
f.stats.Gauge("rows", float64(f.maxRowID), 1.0)
return nil
}(); err != nil {
f.close()
return err
}
return nil
}
// openStorage opens the storage bitmap.
func (f *Fragment) openStorage() error {
// Create a roaring bitmap to serve as storage for the slice.
f.storage = roaring.NewBitmap()
// Open the data file to be mmap'd and used as an ops log.
file, err := os.OpenFile(f.path, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
if err != nil {
return fmt.Errorf("open file: %s", err)
}
f.file = file
// Lock the underlying file.
if err := syscall.Flock(int(f.file.Fd()), syscall.LOCK_EX|syscall.LOCK_NB); err != nil {
return fmt.Errorf("flock: %s", err)
}
// If the file is empty then initialize it with an empty bitmap.
fi, err := f.file.Stat()
if err != nil {
return err
} else if fi.Size() == 0 {
if _, err := f.storage.WriteTo(f.file); err != nil {
return fmt.Errorf("init storage file: %s", err)
}
fi, err = f.file.Stat()
if err != nil {
return err
}
}
// Mmap the underlying file so it can be zero copied.
storageData, err := syscall.Mmap(int(f.file.Fd()), 0, int(fi.Size()), syscall.PROT_READ, syscall.MAP_SHARED)
if err != nil {
return fmt.Errorf("mmap: %s", err)
}
f.storageData = storageData
// Advise the kernel that the mmap is accessed randomly.
if err := madvise(f.storageData, syscall.MADV_RANDOM); err != nil {
return fmt.Errorf("madvise: %s", err)
}
// Attach the mmap file to the bitmap.
data := f.storageData
if err := f.storage.UnmarshalBinary(data); err != nil {
return fmt.Errorf("unmarshal storage: file=%s, err=%s", f.file.Name(), err)
}
// Attach the file to the bitmap to act as a write-ahead log.
f.storage.OpWriter = f.file
f.rowCache = &SimpleCache{make(map[uint64]*Bitmap)}
return nil
}
// openCache initializes the cache from row ids persisted to disk.
func (f *Fragment) openCache() error {
// Determine cache type from frame name.
switch f.CacheType {
case CacheTypeRanked:
f.cache = NewRankCache(f.CacheSize)
case CacheTypeLRU:
f.cache = NewLRUCache(f.CacheSize)
case CacheTypeNone:
f.cache = NewNopCache()
default:
return ErrInvalidCacheType
}
// Read cache data from disk.
path := f.CachePath()
buf, err := ioutil.ReadFile(path)
if os.IsNotExist(err) {
return nil
} else if err != nil {
return fmt.Errorf("open cache: %s", err)
}
// Unmarshal cache data.
var pb internal.Cache
if err := proto.Unmarshal(buf, &pb); err != nil {
f.logger().Printf("error unmarshaling cache data, skipping: path=%s, err=%s", path, err)
return nil
}
// Read in all rows by ID.
// This will cause them to be added to the cache.
for _, id := range pb.IDs {
n := f.row(id, false, false).Count()
f.cache.BulkAdd(id, n)
}
f.cache.Invalidate()
return nil
}
// Close flushes the underlying storage, closes the file and unlocks it.
func (f *Fragment) Close() error {
f.mu.Lock()
defer f.mu.Unlock()
return f.close()
}
func (f *Fragment) close() error {
// Flush cache if closing gracefully.
if err := f.flushCache(); err != nil {
f.logger().Printf("fragment: error flushing cache on close: err=%s, path=%s", err, f.path)
}
// Close underlying storage.
if err := f.closeStorage(); err != nil {
f.logger().Printf("fragment: error closing storage: err=%s, path=%s", err, f.path)
}
// Remove checksums.
f.checksums = nil
return nil
}
func (f *Fragment) closeStorage() error {
// Clear the storage bitmap so it doesn't access the closed mmap.
f.storage = roaring.NewBitmap()
// Unmap the file.
if f.storageData != nil {
if err := syscall.Munmap(f.storageData); err != nil {
return fmt.Errorf("munmap: %s", err)
}
f.storageData = nil
}
// Flush file, unlock & close.
if f.file != nil {
if err := f.file.Sync(); err != nil {
return fmt.Errorf("sync: %s", err)
}
if err := syscall.Flock(int(f.file.Fd()), syscall.LOCK_UN); err != nil {
return fmt.Errorf("unlock: %s", err)
}
if err := f.file.Close(); err != nil {
return fmt.Errorf("close file: %s", err)
}
}
return nil
}
// logger returns a logger instance for the fragment.nt.
func (f *Fragment) logger() *log.Logger { return log.New(f.LogOutput, "", log.LstdFlags) }
// Row returns a row by ID.
func (f *Fragment) Row(rowID uint64) *Bitmap {
f.mu.Lock()
defer f.mu.Unlock()
return f.row(rowID, true, true)
}
func (f *Fragment) row(rowID uint64, checkRowCache bool, updateRowCache bool) *Bitmap {
if checkRowCache {
r, ok := f.rowCache.Fetch(rowID)
if ok && r != nil {
return r
}
}
// Only use a subset of the containers.
// NOTE: The start & end ranges must be divisible by
data := f.storage.OffsetRange(f.slice*SliceWidth, rowID*SliceWidth, (rowID+1)*SliceWidth)
// Reference bitmap subrange in storage.
// We Clone() data because otherwise bm will contains pointers to containers in storage.
// This causes unexpected results when we cache the row and try to use it later.
bm := &Bitmap{
segments: []BitmapSegment{{
data: *data.Clone(),
slice: f.slice,
writable: false,
}},
}
bm.InvalidateCount()
if updateRowCache {
f.rowCache.Add(rowID, bm)
}
return bm
}
// SetBit sets a bit for a given column & row within the fragment.
// This updates both the on-disk storage and the in-cache bitmap.
func (f *Fragment) SetBit(rowID, columnID uint64) (changed bool, err error) {
f.mu.Lock()
defer f.mu.Unlock()
return f.setBit(rowID, columnID)
}
func (f *Fragment) setBit(rowID, columnID uint64) (changed bool, err error) {
changed = false
// Determine the position of the bit in the storage.
pos, err := f.pos(rowID, columnID)
if err != nil {
return false, err
}
// Write to storage.
if changed, err = f.storage.Add(pos); err != nil {
return false, err
}
// Don't update the cache if nothing changed.
if !changed {
return changed, nil
}
// Invalidate block checksum.
delete(f.checksums, int(rowID/HashBlockSize))
// Increment number of operations until snapshot is required.
if err := f.incrementOpN(); err != nil {
return false, err
}
// Get the row from row cache or fragment.storage.
bm := f.row(rowID, true, true)
bm.SetBit(columnID)
// Update the cache.
f.cache.Add(rowID, bm.Count())
f.stats.Count("setBit", 1, 0.001)
// Update row count if they have increased.
if rowID > f.maxRowID {
f.maxRowID = rowID
f.stats.Gauge("rows", float64(f.maxRowID), 1.0)
}
return changed, nil
}
// ClearBit clears a bit for a given column & row within the fragment.
// This updates both the on-disk storage and the in-cache bitmap.
func (f *Fragment) ClearBit(rowID, columnID uint64) (bool, error) {
f.mu.Lock()
defer f.mu.Unlock()
return f.clearBit(rowID, columnID)
}
func (f *Fragment) clearBit(rowID, columnID uint64) (changed bool, err error) {
changed = false
// Determine the position of the bit in the storage.
pos, err := f.pos(rowID, columnID)
if err != nil {
return false, err
}
// Write to storage.
if changed, err = f.storage.Remove(pos); err != nil {
return false, err
}
// Don't update the cache if nothing changed.
if !changed {
return changed, nil
}
// Invalidate block checksum.
delete(f.checksums, int(rowID/HashBlockSize))
// Increment number of operations until snapshot is required.
if err := f.incrementOpN(); err != nil {
return false, err
}
// Get the row from cache or fragment.storage.
bm := f.row(rowID, true, true)
bm.ClearBit(columnID)
// Update the cache.
f.cache.Add(rowID, bm.Count())
f.stats.Count("clearBit", 1, 1.0)
return changed, nil
}
func (f *Fragment) bit(rowID, columnID uint64) (bool, error) {
pos, err := f.pos(rowID, columnID)
if err != nil {
return false, err
}
return f.storage.Contains(pos), nil
}
// FieldValue uses a column of bits to read a multi-bit value.
func (f *Fragment) FieldValue(columnID uint64, bitDepth uint) (value uint64, exists bool, err error) {
f.mu.Lock()
defer f.mu.Unlock()
// If existance bit is unset then ignore remaining bits.
if v, err := f.bit(uint64(bitDepth), columnID); err != nil {
return 0, false, err
} else if !v {
return 0, false, nil
}
// Compute other bits into a value.
for i := uint(0); i < bitDepth; i++ {
if v, err := f.bit(uint64(i), columnID); err != nil {
return 0, false, err
} else if v {
value |= (1 << i)
}
}
return value, true, nil
}
// SetFieldValue uses a column of bits to set a multi-bit value.
func (f *Fragment) SetFieldValue(columnID uint64, bitDepth uint, value uint64) (changed bool, err error) {
f.mu.Lock()
defer f.mu.Unlock()
for i := uint(0); i < bitDepth; i++ {
if value&(1<<i) != 0 {
if c, err := f.setBit(uint64(i), columnID); err != nil {
return changed, err
} else if c {
changed = true
}
} else {
if c, err := f.clearBit(uint64(i), columnID); err != nil {
return changed, err
} else if c {
changed = true
}
}
}
// Mark value as set.
if c, err := f.setBit(uint64(bitDepth), columnID); err != nil {
return changed, err
} else if c {
changed = true
}
return changed, nil
}
func (f *Fragment) FieldRange(op string, bitDepth uint, predicate uint64) (*Bitmap, error) {
switch op {
case RangeOpEQ:
return f.fieldRangeEQ(bitDepth, predicate)
case RangeOpLT, RangeOpLTE:
return f.fieldRangeLT(bitDepth, predicate, op == RangeOpLTE)
case RangeOpGT, RangeOpGTE:
return f.fieldRangeGT(bitDepth, predicate, op == RangeOpGTE)
default:
return nil, ErrInvalidRangeOperation
}
}
func (f *Fragment) fieldRangeEQ(bitDepth uint, predicate uint64) (*Bitmap, error) {
// Start with set of columns with values set.
b := f.Row(uint64(bitDepth))
// Filter any bits that don't match the current bit value.
for i := int(bitDepth - 1); i >= 0; i-- {
row := f.Row(uint64(i))
bit := (predicate >> uint(i)) & 1
if bit == 1 {
b = b.Intersect(row)
} else {
b = b.Difference(row)
}
}
return b, nil
}
func (f *Fragment) fieldRangeLT(bitDepth uint, predicate uint64, allowEquality bool) (*Bitmap, error) {
keep := NewBitmap()
// Start with set of columns with values set.
b := f.Row(uint64(bitDepth))
// Filter any bits that don't match the current bit value.
leadingZeros := true
for i := int(bitDepth - 1); i >= 0; i-- {
row := f.Row(uint64(i))
bit := (predicate >> uint(i)) & 1
// Remove any columns with higher bits set.
if leadingZeros {
if bit == 0 {
b = b.Difference(row)
continue
} else {
leadingZeros = false
}
}
// Handle last bit differently.
// If bit is zero then return only already kept columns.
// If bit is one then remove any one columns.
if i == 0 && !allowEquality {
if bit == 0 {
return keep, nil
}
return b.Difference(row.Difference(keep)), nil
}
// If bit is zero then remove all set columns not in excluded bitmap.
if bit == 0 {
b = b.Difference(row.Difference(keep))
continue
}
// If bit is set then add columns for set bits to exclude.
keep = keep.Union(b.Difference(row))
}
return b, nil
}
func (f *Fragment) fieldRangeGT(bitDepth uint, predicate uint64, allowEquality bool) (*Bitmap, error) {
b := f.Row(uint64(bitDepth))
keep := NewBitmap()
// Filter any bits that don't match the current bit value.
for i := int(bitDepth - 1); i >= 0; i-- {
row := f.Row(uint64(i))
bit := (predicate >> uint(i)) & 1
// Handle last bit differently.
// If bit is one then return only already kept columns.
// If bit is zero then remove any unset columns.
if i == 0 && !allowEquality {
if bit == 1 {
return keep, nil
}
return b.Difference(b.Difference(row).Difference(keep)), nil
}
// If bit is set then remove all unset columns not already kept.
if bit == 1 {
b = b.Difference(b.Difference(row).Difference(keep))
continue
}
// If bit is unset then add columns with set bit to keep.
keep = keep.Union(b.Intersect(row))
}
return b, nil
}
// pos translates the row ID and column ID into a position in the storage bitmap.
func (f *Fragment) pos(rowID, columnID uint64) (uint64, error) {
// Return an error if the column ID is out of the range of the fragment's slice.
minColumnID := f.slice * SliceWidth
if columnID < minColumnID || columnID >= minColumnID+SliceWidth {
return 0, errors.New("column out of bounds")
}
return Pos(rowID, columnID), nil
}
// ForEachBit executes fn for every bit set in the fragment.
// Errors returned from fn are passed through.
func (f *Fragment) ForEachBit(fn func(rowID, columnID uint64) error) error {
f.mu.Lock()
defer f.mu.Unlock()
var err error
f.storage.ForEach(func(i uint64) {
// Skip if an error has already occurred.
if err != nil {
return
}
// Invoke caller's function.
err = fn(i/SliceWidth, (f.slice*SliceWidth)+(i%SliceWidth))
})
return err
}
// Top returns the top rows from the fragment.
// If opt.Src is specified then only rows which intersect src are returned.
// If opt.FilterValues exist then the row attribute specified by field is matched.
func (f *Fragment) Top(opt TopOptions) ([]Pair, error) {
// Retrieve pairs. If no row ids specified then return from cache.
pairs := f.topBitmapPairs(opt.RowIDs)
// If row ids are provided, we don't want to truncate the result set
if len(opt.RowIDs) > 0 {
opt.N = 0
}
// Create a fast lookup of filter values.
var filters map[interface{}]struct{}
if opt.FilterField != "" && len(opt.FilterValues) > 0 {
filters = make(map[interface{}]struct{})
for _, v := range opt.FilterValues {
filters[v] = struct{}{}
}
}
// Use `tanimotoThreshold > 0` to indicate whether or not we are considering Tanimoto.
var tanimotoThreshold uint64
var minTanimoto, maxTanimoto float64
var srcCount uint64
if opt.TanimotoThreshold > 0 && opt.Src != nil {
tanimotoThreshold = opt.TanimotoThreshold
srcCount = opt.Src.Count()
minTanimoto = float64(srcCount*tanimotoThreshold) / 100
maxTanimoto = float64(srcCount*100) / float64(tanimotoThreshold)
}
// Iterate over rankings and add to results until we have enough.
results := &PairHeap{}
for _, pair := range pairs {
rowID, cnt := pair.ID, pair.Count
// Ignore empty rows.
if cnt <= 0 {
continue
}
// Check against either Tanimoto threshold or minimum threshold.
if tanimotoThreshold > 0 {
// Ignore counts outside of the Tanimoto min/max values.
if float64(cnt) <= minTanimoto || float64(cnt) >= maxTanimoto {
continue
}
} else {
// Ignore counts less than MinThreshold.
if cnt < opt.MinThreshold {
continue
}
}
// Apply filter, if set.
if filters != nil {
attr, err := f.RowAttrStore.Attrs(rowID)
if err != nil {
return nil, err
} else if attr == nil {
continue
} else if attrValue := attr[opt.FilterField]; attrValue == nil {
continue
} else if _, ok := filters[attrValue]; !ok {
continue
}
}
// The initial n pairs should simply be added to the results.
if opt.N == 0 || results.Len() < opt.N {
// Calculate count and append.
count := cnt
if opt.Src != nil {
count = opt.Src.IntersectionCount(f.Row(rowID))
}
if count == 0 {
continue
}
// Check against either Tanimoto threshold or minimum threshold.
if tanimotoThreshold > 0 {
tanimoto := math.Ceil(float64(count*100) / float64(cnt+srcCount-count))
if tanimoto <= float64(tanimotoThreshold) {
continue
}
} else {
if count < opt.MinThreshold {
continue
}
}
heap.Push(results, Pair{ID: rowID, Count: count})
// If we reach the requested number of pairs and we are not computing
// intersections then simply exit. If we are intersecting then sort
// and then only keep pairs that are higher than the lowest count.
if opt.N > 0 && results.Len() == opt.N {
if opt.Src == nil {
break
}
}
continue
}
// Retrieve the lowest count we have.
// If it's too low then don't try finding anymore pairs.
threshold := results.Pairs[0].Count
// If the row doesn't have enough bits set before the intersection
// then we can assume that any remaining rows also have a count too low.
if threshold < opt.MinThreshold || cnt < threshold {
break
}
// Calculate the intersecting bit count and skip if it's below our
// last row in our current result set.
count := opt.Src.IntersectionCount(f.Row(rowID))
if count < threshold {
continue
}
heap.Push(results, Pair{ID: rowID, Count: count})
}
//Pop first opt.N elements out of heap
r := make(Pairs, results.Len(), results.Len())
x := results.Len()
i := 1
for results.Len() > 0 {
r[x-i] = heap.Pop(results).(Pair)
i++
}
return r, nil
}
func (f *Fragment) topBitmapPairs(rowIDs []uint64) []BitmapPair {
// Don't retrieve from storage if CacheTypeNone.
if f.CacheType == CacheTypeNone {
return f.cache.Top()
}
// If no specific rows are requested, retrieve top rows.
if len(rowIDs) == 0 {
f.mu.Lock()
defer f.mu.Unlock()
f.cache.Invalidate()
return f.cache.Top()
}
// Otherwise retrieve specific rows.
pairs := make([]BitmapPair, 0, len(rowIDs))
for _, rowID := range rowIDs {
// Look up cache first, if available.
if n := f.cache.Get(rowID); n > 0 {
pairs = append(pairs, BitmapPair{
ID: rowID,
Count: n,
})
continue
}
bm := f.Row(rowID)
if bm.Count() > 0 {
// Otherwise load from storage.
pairs = append(pairs, BitmapPair{
ID: rowID,
Count: bm.Count(),
})
}
}
sort.Sort(BitmapPairs(pairs))
return pairs
}
// TopOptions represents options passed into the Top() function.
type TopOptions struct {
// Number of rows to return.
N int
// Bitmap to intersect with.
Src *Bitmap
// Specific rows to filter against.
RowIDs []uint64
MinThreshold uint64
// Filter field name & values.
FilterField string
FilterValues []interface{}
TanimotoThreshold uint64
}
// Checksum returns a checksum for the entire fragment.
// If two fragments have the same checksum then they have the same data.
func (f *Fragment) Checksum() []byte {
h := sha1.New()
for _, block := range f.Blocks() {
h.Write(block.Checksum)
}
return h.Sum(nil)
}
// BlockN returns the number of blocks in the fragment.
func (f *Fragment) BlockN() int {
f.mu.Lock()
defer f.mu.Unlock()
return int(f.storage.Max() / (HashBlockSize * SliceWidth))
}
// InvalidateChecksums clears all cached block checksums.
func (f *Fragment) InvalidateChecksums() {
f.mu.Lock()
f.checksums = make(map[int][]byte)
f.mu.Unlock()
}
// Blocks returns info for all blocks containing data.
func (f *Fragment) Blocks() []FragmentBlock {
f.mu.Lock()
defer f.mu.Unlock()
var a []FragmentBlock
// Initialize the iterator.
itr := f.storage.Iterator()
itr.Seek(0)
// Initialize block hasher.
h := newBlockHasher()
// Iterate over each value in the fragment.
v, eof := itr.Next()
if eof {
return nil
}
blockID := int(v / (HashBlockSize * SliceWidth))
for {
// Check for multiple block checksums in a row.
if n := f.readContiguousChecksums(&a, blockID); n > 0 {
itr.Seek(uint64(blockID+n) * HashBlockSize * SliceWidth)
v, eof = itr.Next()
if eof {
break
}
blockID = int(v / (HashBlockSize * SliceWidth))
continue
}
// Reset hasher.
h.blockID = blockID
h.Reset()
// Read all values for the block.
for ; ; v, eof = itr.Next() {
// Once we hit the next block, save the value for the next iteration.
blockID = int(v / (HashBlockSize * SliceWidth))
if blockID != h.blockID || eof {
break
}
h.WriteValue(v)
}
// Cache checksum.
chksum := h.Sum()
f.checksums[h.blockID] = chksum
// Append block.
a = append(a, FragmentBlock{
ID: h.blockID,
Checksum: chksum,
})
// Exit if we're at the end.
if eof {
break
}
}
return a
}
// readContiguousChecksums appends multiple checksums in a row and returns the count added.
func (f *Fragment) readContiguousChecksums(a *[]FragmentBlock, blockID int) (n int) {
for i := 0; ; i++ {
chksum := f.checksums[blockID+i]
if chksum == nil {
return i
}
*a = append(*a, FragmentBlock{
ID: blockID + i,
Checksum: chksum,
})
}
}
// BlockData returns bits in a block as row & column ID pairs.
func (f *Fragment) BlockData(id int) (rowIDs, columnIDs []uint64) {
f.mu.Lock()
defer f.mu.Unlock()
f.storage.ForEachRange(uint64(id)*HashBlockSize*SliceWidth, (uint64(id)+1)*HashBlockSize*SliceWidth, func(i uint64) {
rowIDs = append(rowIDs, i/SliceWidth)
columnIDs = append(columnIDs, i%SliceWidth)
})
return
}
// MergeBlock compares the block's bits and computes a diff with another set of block bits.
// The state of a bit is determined by consensus from all blocks being considered.
//
// For example, if 3 blocks are compared and two have a set bit and one has a
// cleared bit then the bit is considered cleared. The function returns the
// diff per incoming block so that all can be in sync.
func (f *Fragment) MergeBlock(id int, data []PairSet) (sets, clears []PairSet, err error) {
// Ensure that all pair sets are of equal length.
for i := range data {
if len(data[i].RowIDs) != len(data[i].ColumnIDs) {
return nil, nil, fmt.Errorf("pair set mismatch(idx=%d): %d != %d", i, len(data[i].RowIDs), len(data[i].ColumnIDs))
}
}