forked from MaurizioFD/RecSys2019_DeepLearning_Evaluation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_IJCAI_18_CoupledCF.py
445 lines (327 loc) · 20.7 KB
/
run_IJCAI_18_CoupledCF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 13/03/19
@author: Simone Boglio
"""
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative, runParameterSearch_Content, runParameterSearch_Hybrid
# from ParameterTuning.parameter_search_ensemble import runParameterSearch_Ensemble
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderArgs
from Recommender_import_list import *
from Utils.ResultFolderLoader import ResultFolderLoader, generate_latex_hyperparameters
from Utils.print_negative_items_stats import print_negative_items_stats
from functools import partial
import numpy as np
import os, traceback, argparse
from Conferences.IJCAI.CoupledCF_our_interface.Movielens1MReader.Movielens1MReader import Movielens1MReader
from Conferences.IJCAI.CoupledCF_our_interface.TafengReader.TafengReader import TafengReader
from Conferences.IJCAI.CoupledCF_our_interface.CoupledCFWrapper import CoupledCF_RecommenderWrapper
from Conferences.IJCAI.CoupledCF_our_interface.DeepCFWrapper import DeepCF_RecommenderWrapper
def read_data_split_and_search(dataset_name,
flag_baselines_tune = False,
flag_DL_article_default = False, flag_DL_tune = False,
flag_print_results = False):
result_folder_path = "result_experiments/IJCAI/CoupledCF_{}/".format(dataset_name)
#Logger(path=result_folder_path, name_file='CoupledCF_' + dataset_name)
if dataset_name.startswith("movielens1m"):
if dataset_name.endswith("_original"):
dataset = Movielens1MReader(result_folder_path, type ='original')
elif dataset_name.endswith("_ours"):
dataset = Movielens1MReader(result_folder_path, type ='ours')
else:
print("Dataset name not supported, current is {}".format(dataset_name))
return
UCM_to_report = ["UCM_all"]
ICM_to_report = ["ICM_all"]
UCM_CoupledCF = dataset.ICM_DICT["UCM_all"]
ICM_CoupledCF = dataset.ICM_DICT["ICM_all"]
elif dataset_name.startswith("tafeng"):
if dataset_name.endswith("_original"):
dataset = TafengReader(result_folder_path, type ='original')
elif dataset_name.endswith("_ours"):
dataset = TafengReader(result_folder_path, type ='ours')
else:
print("Dataset name not supported, current is {}".format(dataset_name))
return
UCM_to_report = ["UCM_all"]
ICM_to_report = ["ICM_original"]
UCM_CoupledCF = dataset.ICM_DICT["UCM_all"]
ICM_CoupledCF = dataset.ICM_DICT["ICM_original"]
else:
print("Dataset name not supported, current is {}".format(dataset_name))
return
print ('Current dataset is: {}'.format(dataset_name))
UCM_dict = {UCM_name:UCM_object for (UCM_name,UCM_object) in dataset.ICM_DICT.items() if "UCM" in UCM_name}
ICM_dict = {UCM_name:UCM_object for (UCM_name,UCM_object) in dataset.ICM_DICT.items() if "ICM" in UCM_name}
URM_train = dataset.URM_DICT["URM_train"].copy()
URM_validation = dataset.URM_DICT["URM_validation"].copy()
URM_test = dataset.URM_DICT["URM_test"].copy()
URM_test_negative = dataset.URM_DICT["URM_test_negative"].copy()
# Matrices are 1-indexed, so remove first row
print_negative_items_stats(URM_train[1:], URM_validation[1:], URM_test[1:], URM_test_negative[1:])
# Ensure IMPLICIT data
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
assert_implicit_data([URM_train, URM_validation, URM_test, URM_test_negative])
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
# If directory does not exist, create
if not os.path.exists(result_folder_path):
os.makedirs(result_folder_path)
collaborative_algorithm_list = [
Random,
TopPop,
UserKNNCFRecommender,
ItemKNNCFRecommender,
P3alphaRecommender,
RP3betaRecommender,
PureSVDRecommender,
NMFRecommender,
IALSRecommender,
MatrixFactorization_BPR_Cython,
MatrixFactorization_FunkSVD_Cython,
EASE_R_Recommender,
SLIM_BPR_Cython,
SLIMElasticNetRecommender,
]
metric_to_optimize = "NDCG"
n_cases = 50
n_random_starts = 15
from Base.Evaluation.Evaluator import EvaluatorNegativeItemSample
cutoff_list_validation = [5]
cutoff_list_test = [1,2,3,4,5,6,7,8,9,10]
evaluator_validation = EvaluatorNegativeItemSample(URM_validation, URM_test_negative, cutoff_list=cutoff_list_validation)
evaluator_test = EvaluatorNegativeItemSample(URM_test, URM_test_negative, cutoff_list=cutoff_list_test)
runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation_earlystopping = evaluator_validation,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
n_cases = n_cases,
n_random_starts = n_random_starts)
if flag_baselines_tune:
for recommender_class in collaborative_algorithm_list:
try:
runParameterSearch_Collaborative_partial(recommender_class)
except Exception as e:
print("On recommender {} Exception {}".format(recommender_class, str(e)))
traceback.print_exc()
###############################################################################################
##### Item Content Baselines
for ICM_name, ICM_object in ICM_dict.items():
try:
runParameterSearch_Content(ItemKNNCBFRecommender,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = ICM_name,
ICM_object = ICM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
runParameterSearch_Hybrid(ItemKNN_CFCBF_Hybrid_Recommender,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = ICM_name,
ICM_object = ICM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
except Exception as e:
print("On CBF recommender for ICM {} Exception {}".format(ICM_name, str(e)))
traceback.print_exc()
################################################################################################
###### User Content Baselines
for UCM_name, UCM_object in UCM_dict.items():
try:
runParameterSearch_Content(UserKNNCBFRecommender,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = UCM_name,
ICM_object = UCM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
runParameterSearch_Hybrid(UserKNN_CFCBF_Hybrid_Recommender,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = UCM_name,
ICM_object = UCM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
except Exception as e:
print("On CBF recommender for UCM {} Exception {}".format(UCM_name, str(e)))
traceback.print_exc()
################################################################################################
######
###### DL ALGORITHM
######
if flag_DL_article_default:
model_name = dataset.DATASET_NAME
earlystopping_hyperparameters = {
'validation_every_n': 5,
'stop_on_validation': True,
'lower_validations_allowed': 5,
'evaluator_object': evaluator_validation,
'validation_metric': metric_to_optimize
}
if 'tafeng' in dataset_name:
model_number = 3
article_hyperparameters = {'learning_rate': 0.005,
'epochs': 100,
'n_negative_sample': 4,
'temp_file_folder': None,
'dataset_name': model_name,
'number_model': model_number,
'verbose': 0,
'plot_model': False,
}
else:
# movielens1m and other dataset
model_number = 3
article_hyperparameters = {'learning_rate': 0.001,
'epochs': 100,
'n_negative_sample': 4,
'temp_file_folder': None,
'dataset_name': model_name,
'number_model': model_number,
'verbose': 0,
'plot_model': False,
}
parameterSearch = SearchSingleCase(DeepCF_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_input_args = SearchInputRecommenderArgs(CONSTRUCTOR_POSITIONAL_ARGS=[URM_train],
FIT_KEYWORD_ARGS=earlystopping_hyperparameters)
recommender_input_args_last_test = recommender_input_args.copy()
recommender_input_args_last_test.CONSTRUCTOR_POSITIONAL_ARGS[0] = URM_train + URM_validation
parameterSearch.search(recommender_input_args,
recommender_input_args_last_test = recommender_input_args_last_test,
fit_hyperparameters_values=article_hyperparameters,
output_folder_path=result_folder_path,
resume_from_saved = True,
output_file_name_root=DeepCF_RecommenderWrapper.RECOMMENDER_NAME)
if 'tafeng' in dataset_name:
# tafeng model has a different structure
model_number = 2
article_hyperparameters = {'learning_rate': 0.005,
'epochs': 100,
'n_negative_sample': 4,
'temp_file_folder': None,
'dataset_name': "Tafeng",
'number_model': model_number,
'verbose': 0,
'plot_model': False,
}
else:
# movielens1m use this tructure with model 2
model_number = 2
article_hyperparameters = {'learning_rate': 0.001,
'epochs': 100,
'n_negative_sample': 4,
'temp_file_folder': None,
'dataset_name': "Movielens1M",
'number_model': model_number,
'verbose': 0,
'plot_model': False,
}
parameterSearch = SearchSingleCase(CoupledCF_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_input_args = SearchInputRecommenderArgs(CONSTRUCTOR_POSITIONAL_ARGS=[URM_train, UCM_CoupledCF, ICM_CoupledCF],
FIT_KEYWORD_ARGS=earlystopping_hyperparameters)
recommender_input_args_last_test = recommender_input_args.copy()
recommender_input_args_last_test.CONSTRUCTOR_POSITIONAL_ARGS[0] = URM_train + URM_validation
parameterSearch.search(recommender_input_args,
recommender_input_args_last_test = recommender_input_args_last_test,
fit_hyperparameters_values=article_hyperparameters,
output_folder_path=result_folder_path,
resume_from_saved = True,
output_file_name_root=CoupledCF_RecommenderWrapper.RECOMMENDER_NAME)
################################################################################################
######
###### PRINT RESULTS
######
if flag_print_results:
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
file_name = "{}..//{}_{}_".format(result_folder_path, ALGORITHM_NAME, dataset_name)
result_loader = ResultFolderLoader(result_folder_path,
base_algorithm_list = None,
other_algorithm_list = [DeepCF_RecommenderWrapper, CoupledCF_RecommenderWrapper],
KNN_similarity_list = KNN_similarity_to_report_list,
ICM_names_list = ICM_to_report,
UCM_names_list = UCM_to_report)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("article_metrics"),
metrics_list = ["HIT_RATE", "NDCG"],
cutoffs_list = [1, 5, 10],
table_title = None,
highlight_best = True)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("beyond_accuracy_metrics"),
metrics_list = ["DIVERSITY_MEAN_INTER_LIST", "DIVERSITY_HERFINDAHL", "COVERAGE_ITEM", "DIVERSITY_GINI", "SHANNON_ENTROPY"],
cutoffs_list = [5],
table_title = None,
highlight_best = True)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("all_metrics"),
metrics_list = ["PRECISION", "RECALL", "MAP_MIN_DEN", "MRR", "NDCG", "F1", "HIT_RATE", "ARHR_ALL_HITS",
"NOVELTY", "DIVERSITY_MEAN_INTER_LIST", "DIVERSITY_HERFINDAHL", "COVERAGE_ITEM", "DIVERSITY_GINI", "SHANNON_ENTROPY"],
cutoffs_list = [5],
table_title = None,
highlight_best = True)
result_loader.generate_latex_time_statistics(file_name + "{}_latex_results.txt".format("time"),
n_evaluation_users=n_test_users,
table_title = None)
if __name__ == '__main__':
ALGORITHM_NAME = "CoupledCF"
CONFERENCE_NAME = "IJCAI"
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--baseline_tune', help="Baseline hyperparameter search", type = bool, default = False)
parser.add_argument('-a', '--DL_article_default', help="Train the DL model with article hyperparameters", type = bool, default = False)
parser.add_argument('-p', '--print_results', help="Print results", type = bool, default = True)
input_flags = parser.parse_args()
print(input_flags)
KNN_similarity_to_report_list = ["cosine", "dice", "jaccard", "asymmetric", "tversky"]
dataset_list = ['movielens1m_original', 'movielens1m_ours', 'tafeng_original', 'tafeng_ours']
for dataset_name in dataset_list:
read_data_split_and_search(dataset_name,
flag_baselines_tune=input_flags.baseline_tune,
flag_DL_article_default= input_flags.DL_article_default,
flag_print_results = input_flags.print_results,
)
if input_flags.print_results:
generate_latex_hyperparameters(result_folder_path="result_experiments/{}/".format(CONFERENCE_NAME),
algorithm_name=ALGORITHM_NAME,
experiment_subfolder_list=dataset_list,
ICM_names_to_report_list=["ICM_all", "ICM_original"],
UCM_names_to_report_list=["UCM_all"],
other_algorithm_list=[DeepCF_RecommenderWrapper, CoupledCF_RecommenderWrapper],
KNN_similarity_to_report_list = KNN_similarity_to_report_list,
split_per_algorithm_type = True)