-
Notifications
You must be signed in to change notification settings - Fork 0
/
Book1.twb
1643 lines (1642 loc) · 116 KB
/
Book1.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20182.18.0711.2120 -->
<workbook original-version='18.1' source-build='2018.2.0 (20182.18.0711.2120)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<Extensions />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='song_data' inline='true' name='federated.1as1i531l1picr10wnevt1crmoi9' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='song_data' name='textscan.0yn51jp0b1sx7910vre0w1ljnyoq'>
<connection class='textscan' directory='/Users/czhang/Desktop/Data-Rockstar' filename='song_data.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.0yn51jp0b1sx7910vre0w1ljnyoq' name='song_data.csv' table='[song_data#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='id' ordinal='0' />
<column datatype='string' name='name' ordinal='1' />
<column datatype='string' name='artists' ordinal='2' />
<column datatype='real' name='danceability' ordinal='3' />
<column datatype='real' name='energy' ordinal='4' />
<column datatype='real' name='key' ordinal='5' />
<column datatype='real' name='loudness' ordinal='6' />
<column datatype='real' name='mode' ordinal='7' />
<column datatype='real' name='speechiness' ordinal='8' />
<column datatype='real' name='acousticness' ordinal='9' />
<column datatype='real' name='instrumentalness' ordinal='10' />
<column datatype='real' name='liveness' ordinal='11' />
<column datatype='real' name='valence' ordinal='12' />
<column datatype='real' name='tempo' ordinal='13' />
<column datatype='real' name='duration_ms' ordinal='14' />
<column datatype='real' name='time_signature' ordinal='15' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[song_data.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>id</remote-name>
<remote-type>129</remote-type>
<local-name>[id]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>id</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>name</remote-name>
<remote-type>129</remote-type>
<local-name>[name]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>name</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>artists</remote-name>
<remote-type>129</remote-type>
<local-name>[artists]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>artists</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>danceability</remote-name>
<remote-type>5</remote-type>
<local-name>[danceability]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>danceability</remote-alias>
<ordinal>3</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>energy</remote-name>
<remote-type>5</remote-type>
<local-name>[energy]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>energy</remote-alias>
<ordinal>4</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>key</remote-name>
<remote-type>5</remote-type>
<local-name>[key]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>key</remote-alias>
<ordinal>5</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>loudness</remote-name>
<remote-type>5</remote-type>
<local-name>[loudness]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>loudness</remote-alias>
<ordinal>6</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>mode</remote-name>
<remote-type>5</remote-type>
<local-name>[mode]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>mode</remote-alias>
<ordinal>7</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>speechiness</remote-name>
<remote-type>5</remote-type>
<local-name>[speechiness]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>speechiness</remote-alias>
<ordinal>8</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>acousticness</remote-name>
<remote-type>5</remote-type>
<local-name>[acousticness]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>acousticness</remote-alias>
<ordinal>9</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>instrumentalness</remote-name>
<remote-type>5</remote-type>
<local-name>[instrumentalness]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>instrumentalness</remote-alias>
<ordinal>10</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>liveness</remote-name>
<remote-type>5</remote-type>
<local-name>[liveness]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>liveness</remote-alias>
<ordinal>11</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>valence</remote-name>
<remote-type>5</remote-type>
<local-name>[valence]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>valence</remote-alias>
<ordinal>12</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>tempo</remote-name>
<remote-type>5</remote-type>
<local-name>[tempo]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>tempo</remote-alias>
<ordinal>13</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>duration_ms</remote-name>
<remote-type>5</remote-type>
<local-name>[duration_ms]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>duration_ms</remote-alias>
<ordinal>14</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>time_signature</remote-name>
<remote-type>5</remote-type>
<local-name>[time_signature]</local-name>
<parent-name>[song_data.csv]</parent-name>
<remote-alias>time_signature</remote-alias>
<ordinal>15</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Acousticness' datatype='real' name='[acousticness]' role='measure' type='quantitative' />
<column caption='Artists' datatype='string' name='[artists]' role='dimension' type='nominal' />
<column caption='Danceability' datatype='real' name='[danceability]' role='measure' type='quantitative' />
<column caption='Duration Ms' datatype='real' name='[duration_ms]' role='measure' type='quantitative' />
<column caption='Energy' datatype='real' name='[energy]' role='measure' type='quantitative' />
<column caption='Id' datatype='string' name='[id]' role='dimension' type='nominal' />
<column caption='Instrumentalness' datatype='real' name='[instrumentalness]' role='measure' type='quantitative' />
<column caption='Key' datatype='real' name='[key]' role='dimension' type='ordinal' />
<column caption='Liveness' datatype='real' name='[liveness]' role='measure' type='quantitative' />
<column caption='Loudness' datatype='real' name='[loudness]' role='measure' type='quantitative' />
<column caption='Mode' datatype='real' name='[mode]' role='measure' type='quantitative' />
<column caption='Name' datatype='string' name='[name]' role='dimension' type='nominal' />
<column caption='Speechiness' datatype='real' name='[speechiness]' role='measure' type='quantitative' />
<column caption='Tempo' datatype='real' name='[tempo]' role='measure' type='quantitative' />
<column caption='Time Signature' datatype='real' name='[time_signature]' role='measure' type='quantitative' />
<column caption='Valence' datatype='real' name='[valence]' role='measure' type='quantitative' />
<layout dim-ordering='alphabetic' dim-percentage='0.304167' measure-ordering='alphabetic' measure-percentage='0.695833' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='song_data' name='federated.1as1i531l1picr10wnevt1crmoi9' />
</datasources>
<datasource-dependencies datasource='federated.1as1i531l1picr10wnevt1crmoi9'>
<column caption='Danceability' datatype='real' name='[danceability]' role='measure' type='quantitative' />
<column caption='Name' datatype='string' name='[name]' role='dimension' type='nominal' />
<column-instance column='[name]' derivation='None' name='[none:name:nk]' pivot='key' type='nominal' />
<column-instance column='[danceability]' derivation='Sum' name='[sum:danceability:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='false' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.1as1i531l1picr10wnevt1crmoi9].[none:name:nk]</rows>
<cols>[federated.1as1i531l1picr10wnevt1crmoi9].[sum:danceability:qk]</cols>
</table>
</worksheet>
</worksheets>
<dashboards>
<dashboard name='Dashboard 1'>
<style />
<size maxheight='800' maxwidth='1000' minheight='800' minwidth='1000' />
<zones>
<zone h='100000' id='2' type='layout-basic' w='100000' x='0' y='0'>
<zone h='98000' id='1' name='Sheet 1' w='49200' x='800' y='1000'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone forceUpdate='true' h='98000' id='3' param='[com.tableau.extension.inventorymanagement].[0.9.0].[http://localhost:8765]' type='dashboard-object' w='49200' x='50000' y='1000'>
<add-in add-in-id='com.tableau.extension.inventorymanagement' extension-url='http://localhost:8765' extension-version='0.9.0' instance-id='1D844AA74A0F42B7AE38BD8BDA39BA7A'>
<instance-settings />
<type-settings>
<dashboard />
</type-settings>
</add-in>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
</dashboard>
<dashboard name='Dashboard 2'>
<style />
<size maxheight='800' maxwidth='1000' minheight='800' minwidth='1000' />
<zones />
</dashboard>
</dashboards>
<windows source-height='30'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1as1i531l1picr10wnevt1crmoi9].[none:id:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='dashboard' maximized='true' name='Dashboard 1'>
<viewpoints>
<viewpoint name='Sheet 1' />
</viewpoints>
<active id='3' />
</window>
<window class='dashboard' name='Dashboard 2'>
<viewpoints />
<active id='-1' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Dashboard 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdeVCceX7n+Xde5MGVmQgEOpC4EbpVuu+SSqqz29WXu8vb3piZ7d7ZGO9u
rNdre2zvznhn3HZ4NnYiZmJnN+z1OmbD9rq7q1U6EEJIQkKADhDiFPd9JpBAQgKZ5PnsH4kQ
lI6S1EJJiu8roqJF5pPP73mS6OfL8zy/z/NVKYqiIIQQYtVRh3sDhBBChIcUACGEWKWkAAgh
xColBUAIIVYpKQBCCLFKSQEQQohVSgqAEEKsUlIAhBBilZICIIQQq5QUACGEWKWkAAghxCr1
wgLgcU1TXlbK7dIyRiamAGirr6ChvWd5t0oJUltTR3B5RxFCiFXtuQVg1jHCT//Ff0+/zc7Y
yCD/5g//R9pHZxnu66JnaPjXGjTgHuM//u3Pn/lefUUZ//ynP+H3/ugvkKfUCSHE8tE+743m
hioOnf4+X/zmpwB87wc/JBgEGxAM+LlXdgubfYpjJ0+RaI0DoLu9icrqetKyt7N/91YA/B4X
xcU3mfUpnHz/NBaThgcPqqiprubB9gyi4xPIy05fGHfAZuff/OW/59/9658t424LIYR47hlA
Wno2N6/8AzfLKvEHgoAKtVoFwN//P39N36iTGAP863/7FwC0PLzN//5//WdycrZQ/OXfcrG4
Agjyp//yd5lR9KyN0/P7v/v7+AJ+BvqHcM04GRgYYHx8csm4n3z+XdYmmJdth4UQQoQ89wwg
YUMW//Ev/y2/+MXP+ev/499z+jd+yE9+6zsA/Jf/9e/wrRMHALh+6xYAF89d4Pf/5M/YlBDN
1qw/4vf+5D9wPMOEkrSd7316BoCOhipq2ib4zucfc6d9ku985zvLvX9CCCGe47kFACAlNYP/
4ff/hIBvjp/98f9E2Za8+Xeevjo/OTHJX/+H/w2dGiBI4vpkJiemaKur4E//dAyAmekpdmrl
yr4QQqwEzy0Adls/MQkpGKO0aHQGtmRn4Ha5MT5n+XXrk9n33X/Kwa2bAJiemUE1O8qapE38
qz/9U9RAwO/B41dDYByvx/PiLVOeVWaEEEK8Kc8tAFP2AX7vD/6YDZszUOac+KLi+LN/uoPK
q81LllOpQvcFvvivfsof/vH/wq0t25l2jJKSsYf/7qdfcHxHAv/iv/1dMlLX0t3Ty+//z39J
WkoisTM9/K8/+wvWp2bxk9/+fmhlQTf/6g//FXMqFY/aH/FHf/AHWFM28Ue/+zvL9w0IIcQq
pXphT2BFYWZ2BrVah8lk+MaVKUoQp9OJ3hCNQa9beN0758bl8REfF8d8vUBRgjgmHMTGx6PT
vvBKlBBCiGXw4gIghBDinSWPghBCiFVKCoAQQqxSUgCEEGKVkgIghBCrlBQAIYRYpaQACCHE
KiUFQAghVikpAEIIsUpJARBCiFVKCoAQQqxSUgCEEGKVkgIghBCrlBQAIYRYpaQACCHEKiUF
QAghVikpAMskGAyGbWy/378qxw73+OHedyFelRSAZRLOPjuBQGBVjh3u8cO970K8KunFuEz+
5G9u0tw7Hu7NWPW2pSXxs5+eCvdmCLEiregCMDLYg0cVTeq6xIXXejtaeNTaxfbde0ldl8TD
++VMeVScOH4En8tJye0yNudsJzcjdf4TCg01D+gfnuDA4aOM9Xcy6nACsGXrNrpamxhzTLNn
/0GS15gB8Hlc3Cm/A1ExHD1ykOG+TuobW8neupPMTcncu3MPvwJp2Vsx4aaxrQuVWsPBw4fR
qt72tySEEK9nxV4CGhno4EFlJc2dA09eVLzcqajjw7MfcOf2LfrbapkMxpKeZKDswSOuXS3k
wLH3aai4jcsXugY/PWpDMSRw6sQRbt64TlpWLnv27GFqZICgorB2YwYfnDrOreLihWHu3ypm
8/a9bIzX8KChlYEBO2fOnqXibikep51xr5Y9e/aw1hpHfXUtOTt3s3vXLjRv+0sSQohfw4ot
AGs3ZHLq6IGlL6p0qH1Ozl+4iDYmHtvgINt2bmVz7g7m7IOgjcYSayIvZxMjDjcAsUnr2Jad
yu2b19mcs5UovZ4olQ+3No6kBCse5wg//8d/ZFN23sIwWblZXDl/nqKyCjI2beTg0UO01FYS
nZDC5OQ0k/ZBbt4sYXbOiy/oo+ZuGRXVDajkr38hRARZ0ZeAFgR9FBVeY1PGZohP5Qefn+Hn
v/gVugQLHreHoC6ADx0KXgDmZt2opsYoeFDCgcPHuXb5Vxx+/xM2b1gLQFnpbY4ePw1A1pYd
JCYlU1BUQrx6llGnD49zjC9+6wsCk71UP2pHN9uDfk0mn3+4DYAfb8rG7Rzlask9vvOtzwEo
LzpP/8QcG62Gt//9CCHEa1ixBWCgq43q6od0j7nYmGThw08/RQl4qLhbyY3im/jQkp23iy8v
nsOoUdh/6jMmeuq4UFDIxISTf3J8E3lZm7B1PMI+46ehphL7WDp78jYx6oJT1hhmx0coKr1P
fKwRY2wsW3fuZStQX1nOzZvFKG4nue8d5Oq5VnK2arg6OcHWzYk8bOoi4J4ifdshbl8vxIOO
gcFJ3jsdFe6vTQghXppKCed8xdegKEE8c170RgMqwOf1EgT0UaGDr9s1S5TBhEb9ctdjggE/
Xn8Qg37pwdvn9YJag0779JV9v8+HggqdLlQ/PXNz6PR61IuuAf3Lv7ous4BWgLc5C8jj8aDX
69/KWEK8CRFXACLF9QcdjDnnwjJ2wO9How3PyV04x37W+EnmaE6/l/ZWxpYCICKNFIBlEggE
0GjCMy8onAeicB8EV/O+C/GqVuwsICGEEMvrrZ+rK4qC6h2bL/msfZIk8PL4s5+cYnt6Urg3
Q4h3whs7A3A67FwvKqSyuh4IMtgfCnBNjg/jdPsACPrn+OWXF1BQKCsuorqh9QVrVPB4vM98
xz83zfDY5Au35/FnnQ47oxNTz1ymsa6a8vJymtu7Aejo7Hh6mUdNLxwHoLL0Op0D9m9cTggh
VpI3VgC6Ono4dOx9ZodaGJyco/lRIwC2/k7Gp0MH47qKct47cgLH6ABdAxNsSElkyjFGw6Mm
fIEgs9OTNDU1MemcYbSvhV9dKcY28vSB1Ts9QXv/EJOToSLgcDgAhZ7Odrr7BphxTvLlV+fo
6ulDq1ajUmtwOCbo6+qgd8C2sJ7e/hH27N5NT909hqY86HShmUBD/T20dfSElunuprmxEcfU
DAA9nW309A8ujDs82M/2Ayeovl/+pr5KIYR4K95YAdi1bx8z40P0TgZIinv2jbD+8Vky1lsJ
KgHUmig8c7MUFFwnzqTl6vUS7HY7JpORwquFBINBlECQ4AvuUVc+uAfA/QdV2Doaqe8cYmrc
QVAJEgwGCQQVXBOjDNjslN0oxOH2U15axuMHNU+Oj1BScouBKR9rYqJoa2xkbLCTqoYupoc7
eNjSi3NqAr3JyKVLF+loqKDL7qKj7gE9I5N8+Xf/N3Ut3ag1WqJ0GsL3AGghhHh1b6wAdDQ9
pLymjR9/8SN0avDOPxs94POhInR9XKUCFbAmMZHExGTWWQ1MzHrpGRgmPj6OztZWWlramHW7
SUxKIjF5HeuTn77eG/A//djdxI3p6AMztLW3oYu2kJiYRFb6poX3DWYrO7fmkmSx8LikWBPX
cfbDD8lcb2Zw1IkKsNuH8Xi9zPhV6FQK5oRk0tPSSbIkYBsaxuuaQqU3QMDH+swtfHj6OAad
Bo1ai0ynEkJEkjdWAMrKK9CrfBReucyUK4jXPcXNWyXcr+thXYIRAKMaJl1PmmZojFbWGBUC
fh9qjRanc4oonQZ/IIhaF81gWy01Dc3UVpTj9IQO+hX3Srl4/TbpGzeieOe4caOYtq5+xu3D
oNXjczuZ8wVwT45ys+w+qECFGuaL0OIH9kyMDXK1sIi+kUniYgyAitRNGcw6x/H5/ETptEzY
B7lxvYgZX5DsLXmMjdrx+4NoNWp0Ot3CujzeOXkYnBAioixjDkBhdmYWoyka9Xwqd3pskNvV
nXx29viTpRQFr8+HPiqKYDCAz+dfmEsd8PtRVCq0i+bTezxzqNRaonTaUCrY48NgCC3v83lR
qTRotRqUYBBfIEDUooP0ywoGAgQUBZ1Wi6Io+Pz+hfUE/H4UVGgXJYRHeltoHHBz6sjuhdck
Cbw8vmkWkOQAhHh5yzgNVEV0TMySV2LXrGdrlheFhb/HUalUC49xUKs16PVPDqzPSpTq9U8e
tqZSqRcO/sDCTVwAlVpNlPr1TnDUGs3CqZFKpVpSRJ61Ta5AFCcP5y557fSeNHZmprzW+L+u
dzkJnGSJXrZ1C7HaSBJ4mUgSODxW874L8aokCSyEEKvUin0cdKSTJPDq9qPT2/ji9LZwb4YQ
L/TOngEoAT+V98q5eq2YGZcHgNmpceoa2wEYHAwlldtb20Lz9xUf9yurFz7f3lTPxHz463k6
OzqXZduFEOJteGcLgG2ol4T1GRzZm8uNW/cAhWtF12nvCj3uobGpgeGeVpq7baEvQfFyo6CA
/rFpCPq4ff0qvUP2JelkgJGhAdra2pmankUbFbo57JqZormllTmf/9kbI4QQK9A7WwDWbcwg
dW0816+XkLctl8aqO2zecYhofeiq11BPJ/m3Kvjk7ImFz+zatZuGmhr62x+RmrMTYEk6eaCj
gXs1rUwN91Df0UtTSytK0Mu5cxfRaVRMz8yGZV+FEOJ1vLMFwD83zd//3S85euYzsjclUVFV
h2Ook462NgZHJ0hJTWNtjI4hu2PhM1qTBZ97kkftg+zITgVYkk4eG7Gx/+gx0jZuWPhM0DOF
deMWMrOySbTEv/X9FEKI1/XOFoCW+ocEtFoq7pTS2NrDP/tvfodTp06RmZPN+iQrarWGz77z
XUoKL+H2BQlFhlVkr09gKqBHO//NLE4np+duo6TgK27eCT2DSKVWoTEm4B5u5tq1IgZGJsK3
w0II8YokB/ANFqeTJ+022nptjPZ3krvvJJkbEkMLKQreRWlhkCTwaiezgEQkkALwKhQF++gI
Gr0Rq/nFl3ukJ3B4rJR935aWJI1rxIonBWCZSBI4PFbzvgvxqt7ZewBCCCFeTJLAy0SSwJFL
+g6L1eKdPQMY7Omgs3cIgOZHTa/VrcvnnqasrIwHVdXMeUMhL0n/CiHeFe9sAaiqraeuuhKA
gf5BhgZ6ae/qA2B81Majxmb8QYVJhwPXjJMR+zj2kSGamlvw+ELNZ3wzE3i10axPMvP//eIr
FFhI/9oGeunuGwQlSFtLE4PD0hReCBFZ3skCEJhzotabidWpmPYEwO9icGSSlqpyRsZHuVJ8
D70mwJWim1TeKePilasoqLDbxzBo4VrxzYV1RRkMrEtNJ92qZ9qn0NTSSm/zQx429TE7O0Nl
aTGzAR0PSq8z6ZZHQQghIsc7WQCa6qpxTI4zMeWgpq4FtCb2vreTjesTGR8eYcuOnWTlbkMV
8KJSa/nu975PckIMj+obae/uw+t9evrmzJwfvSbUxmawz8bRk0fYtiUH2/gk0+M2DLFx+LxP
9yoWQoiV6p28Cdw5OMmPv/gBaiXAV1/lE2t60kXKumETlecv4OhvIc6agndqHK1GjeL3M+v2
YFECBBc1sa+vus9YdzOWtRvRq0Pp3+y8reT/6lckJq0lL3MTdV2jmDRB1BrV8zZJCCFWnFWZ
AwgGAni8PoxGw5LX/T4vikqN7iWCRMFAAAXQaDT4fT5Uag0azZMTKkkCR67XnQUkOQARad7J
M4BvotZoMBqfDmlpF/UUfpl1PPnc043npSdweLyJ8aXvsFgtVuUZwNsgSeDwWM37LsSreidv
AgshhPhmq/IS0NsgSeA3b1taEj/76alwb4YQ74xVdwbQUF2JYzo0zbP+0aMl/wtQ+7CaIKEU
sG3MgX2olymXb8k6HCP9DNmdCz/7vB6CciFNCBFhVlUBUIJeHj2qp7KqDoDBIduS/wV4eOcq
FbVt+GYm6Oi3odZo0ahV+L1ztDQ10ds/hNMxRl//0HyaOEDhl1/S1NHJjCs8j38WQojXsaoK
QF9rA7n7P2R2YvC5y2zcspv+lof45x8eNGrrwe70cOFXX6JodJSUFIfW1ddLcMbOw0ftBJQg
Ab8fkByAECJyrKoCUNvQRG97A7bBfoYn3c9d7uThPdy+93DJayazhS05WcTHmADYvnMPmemb
8AaCrE1MJDM7hxiTzAARQkSO1VMAgj6CUVY+/9Yn/JPf+h51NfWo1POJX/WTv9zVKhVJqTl4
nPaFv+dVKhUmrUJBwRX6hseWrFalAktiHEVXrmKzT76tvRFCiF+b5ABeUs3DSrS6KB619fLF
93/jqfe9Hg+6KD2q+aohSeA372VmAUkOQIiXJwXgJXncLuzjDpJTUtBqvvnESXoCv3lJ5mhO
v5f2wmWkAAjx8qQALBNJAofHat53IV7V6rkHIIQQYglJAi8TSQK/+350ehtfnN4W7s0Q4rWt
ijOAxf2BA34f/kBokr/H6/nGzy5evqOzY/k2Uggh3rJVcQZQVVtPQFGTselz7pZcAXMm2RsS
uHnjBvsPHWZz+mY6W1uINieyfq2V0RE79rExNm7OoO7+NTBnsj17E7r5x0XbBnqZnPWRm5PJ
pGOCaccESlQ0mzaE5/HPQgjxOt75M4Cv9wdWgkGCfj8BBYLBIH5/kAeL+/q6ZvnVry5jNBkp
KSlZWD6oQFtjI+ODndyrbiHgsnOzrJqyG4U43H7KS8sIhntnhRDiFbzzBeDr/YETk5JITc9k
XUoyaxMTycnJZORrfX3Ts7aQnp6BQc/C8tb4GFTAqH2YnfsOsW33ATxOGwazlZ1bc0myWJDp
VEKISPLOF4DH/YF/+Fu/zVh/O2azlfslRXT1DRPwuym6dovMjE2MTjgJ+uf7+s4fydUq1ZLl
QcWmzVmUX8+n4OJ51m7ewsLzf1TyHCAhRGRZlTkAn9eLRqdDDXh8PvRRUc/s6/vU8vMH+YDf
h8+vYDA8v4WkJIHffV+fBSQ5ABFpVsVN4K/TRT05cOvn//2svr7PWh5Ao9Wh+YZvTnoCh8fb
HH9b2qs3jhdiJVmVZwBvgySBw2M177sQr+qdvwcghBDi2d65S0CKoqBaATdkJQksfl2SNBbL
7blnAGPDA5SVlVH54CFur//ZCwW9NDxqf+nBvDPjtM0ncqcnxygrK+P+/UqcM89vzgIwZuvD
4XzxMgBz0xNcuFyE3zNDwaV8ugdGn7usEgzg9T29XwN9/Qvz+Xu7OvAF4VF9/cL7ff3982NN
Ync4n/q8EEJEiucWgIHOZjbl7WJjcixFxeV43LM0NzcxOh5qeuIYG6GltZmB+YNsMOCns72V
7v5Qu8XxsVFamhoZmz9IjtgGaG5qZGQi9PmJ4X5iEzeTmb6RoqLrKAE/zY2PsI1OgBJgctIJ
KDgck6jUWrQ6LT6Pm4aGBqamXaAEaWtpYnDYvrDNd8rKOf7++zRUVaCOsZJgjmWov4e2jh4A
JsftNDU1MeP20PrwHsVl97CPL23i0tzYsjCfX6uNQqWC4cEnLSQbm1sAmBmzMTAsf+ELISLX
C+8BPLhTStGNMnJyshi329EbTRQVXGV6wkZB8V2itNqFv5bnnFPMBdW019yjZ3iaS+d/hdZg
5Oat29i6m7hb1YRWvXS4uupKrhcVsTEjmxtXLxPUGrlzowDH7Az37zcAQaruVzBq62bM6aUw
P584s5mCK1eoXJzedYf+kp/xQkKMHn/Aj0ajY7i3laqGLqaHO3jY0ot9dAyj0UDhlesElAAB
f5AX3QPvbW7EI/FeIcQ76oX3AI6cOoN2ZoR7NY0kxWgYn/bhnJ5lZHiIPe8dJj09hrauWgAm
xm00N3URdM3gds+xfnMamenpdLR2Yuvv59D7p4lzDzIxMLuw/r0HjrHBoqao5D5xUVq25mQQ
5R1jxO58kq96vLAKHNNOerq6iI23YBufwKJ6kt7FqEWlDs26SUpKIka/gcBUGx6vlxm/DotK
obWlAZ0xnjmPl7WJSXhjDSStsbzSF+b3+QDwBQJIE3ghRCR74RnA7etFlN65jzVhLY7JKQyG
KLw+H2vXbaSi7BrXr93EN38QnHZOoTMY8cw9fsLmfL9dlYoN6Rlcu3Sem6V3FsJUKFB5r4Rb
t0uJs1hYY4mmoOgG96pa2LQ+EVtfK9euXmXW/+Qgm5qciNvrQ1EU8jK/lt4FFJ8b36K/2FM3
ZTDrHMfn8xOl0zDlnEWrURMIBDHFm6mtuk9zWxd3bpcunMkoATcF+fncqawFVI/3YmGd0Sof
V2/c5OrtCjZvXEdtRTlOT4DS0tLX/BUIIUR4vHwOQAni9vgwGkLznP0+HwoqdLonJxFzbjd6
g/GZT0Xweb2oNBq0L5gbP+d2oYsyoNGo8fm8qNQaVAEvly9e4MDZ75Icr8fr9aDVRaFWqZ5K
7w52NtA+BicPbF9YZzAQIKAo6LRaAn4//qCCPkq3sA8qjQaN+tVmw7pmZ4kyGF/YGlKSwOLX
JbOAxHJb8UGwoM/D8LiTdcmJL7V8d3c3aWkv7hv7NkhP4PB4l/Z9W1oS29MlbSyWz4ovAJFK
ksDhsZr3XYhXJUlgIYRYpSIiCbxS0r2vQpLAkeHPfnJKLrOIVeuFZwCvmgZ+VFdNWVkZZWVl
9PQN09T0aGExp8PO6MTUK29g3b3bNHfbnvne4x69j3v7Nj9qerorlxLkYcVdim/dxuUNfON4
j7ez/VH9czMAtv5uioqK6Bt6ftJYCCFWuhcWgK+ngWenJ2lqamLSOQM8nQbOyslD550idctO
1qUk0NfbTUtTI+OTTrRqNSq1Bodjgr6uDnoHQgf16ckJmppasI9P4HXP0tTUhGMqtH6UAO0D
4+RstDI5PYtvzsWYYwol4GPSOYNOF8Xk+Chf/fIc/YM2BvoHGRropb2rb2Ef7hZfRROfzP7d
2wkGgvR0d9Le2Y0CTIzbaW1uxD42TnNjI1Mz7oXttA8O4lfAPjJEU3MLHl+oeMw6hrlxr46T
J09i0ssVNCFE5PrGI9jiNLDdbsdkMlJ4tZDZZ6SB9QYDBoMeo9FElE6HbaAfrd7IzZu3cU2M
MmCzL+mh651z8tWlq+h0Km6VlHL1SgE6vQH7WOjxDrNj/Zg3pKNSApSUlNNU84DCG6X0tzfQ
OTRBW2MjQSVIMBj6D7+LwZFJWqrKccz/+T4+42VXbjqxZismrZfJ6Tkmh9qpbunhasEV1DoD
X375C3QGA6UlJQvb+ZjdPoZBC9eKbwLQ09XGoSPvo9frWZOw5g3/OoQQ4u35xgJw5NQZPvv4
LB2tjXS2ttLS0sas283o4zRwxmY0z7k8v35zGpkZ6cQaDQuvLe6h6512sGnLdrKyMolSw959
79H0qJ4h2xgAPq+PKL0OdVQ0SmAOm9NDSoyGR52DbM3aiAqwrklkbWIimzauB62Jve/tZOP6
RHz+UAEIBkIN4AGcExO0NDczOjaJy+3CmriOrMwM0jKyyMzI4KkJHIqXR/WNtHf34fWGpnQa
DEamp+UhcEKIyPeNBWBxGtjpnCJKp8EfCD4zDQxfb42rWvJPFWoW99A1JqxjtKOOwitXmPXD
YP8gZrOFsbFQAYhdk8z4wAAAG6wmZgNacjLW0Wt3Y9Co5telZmR0kPsPapZu+Pww7+3K4+//
4ecU5F9kYHQClUYXCpktXnThsROqpdsZ9DPr9qBWAgTnP5GWs52miusUXS3iYX2TJIGFEBHr
lXIAwWAAn8+/MNf5WWngV6L4KC+vJEobYMqn58yx/cx5POj1hoWDcsHFcxw98y3iTc/vv7s4
7fu894OAVqPBMzeHLkqPWv1ys4r8Pi+KSv21dSv4fH50L2gjKUngyPAmZwFJDkBEmrAHwZyT
DmY9PlLWPvv/hF73NKOTHjakRNb1dkkCh8erjn9qTxprLdFvZGwpACLShL0AvKskCRweq3nf
hXhVMo9RCCFWqYhIAkciSQKLl3Xxz38U7k0Qq1REngHYh3q4dPkKBZfz6egZeuGyVfcf8PX8
rxL08rd/85/xBd/M1a+x4SF8ciFNCBFhIrIAuJwOsrbu49NPPqTmQQXOiVGuXi2k9O4DUHzc
KS3l8uXLdPbacDhCPX8f1dXjnz/g97U2YF1j5lFbaIppY20VVwqLmJ7zUXW3jKJrxXj9Xm5e
v0bRjVv4AgpdnV0AdHZ0MjU2zO3bpeRfvsLU9AwXfvFLrhQWMjz26o+6EEKIcInIAgBQcec2
f/Wf/k9Ss7ei05vIzcnB1lHHmGuOAZuTTz/5mJbGalCCPKq6w7griHZ+6mdDWz+ffPYx3c31
zI4P0Dns4sMPTmLvacSlS+DkscM8qihjfe5udmUmU1bZQFtbJwDd7W1MjtmIik3m+O5sGjr7
yMvN5oMPPyJ5TXw4vxIhhHglEXsP4MCRE2xJS+CXX15kbqST2JRNWOJjCSoK8WYLKrUGnU4N
Xh8t7V3sOngaACXgYWjIxvWiYoaHB5mdzcK8xopGpyfg82C1pqA3GvHNebCa44lVgni7nzxb
6PGVHrPFgi7KhaJ451+PrKeVCiFERBYAgzGG+w/u0FobJDNvOybfJO293UxPz6HTaLBaQn+J
J1gTUPxqTn36CTcLClmfkoR3YogjZ7/F1owN9LU14NKtYWaolIL8bg4cPUH5zSK6m0wcO36Q
a1cvoSbIqY++Rf29m1wpvILHp8JgigGdDo3OgCUWrOZ0rl68yJFjJ0hJNIf52xFCiJcjOYBl
Iklg8bJkFpAIFykAy6RjYBz3S/QfWA4+n++Fj6l4V8cO9/ivO7Y0pBHhIgVgmUgSODxW874L
8aoi8h5AJOi2TcoZwCoYP8kS/caeJSTE2yYFYJn8TUG13ANYBX50ehtfnN4W7s0Q4rVEbA7g
dX1TivhWaSne6XEa2/ue8WkhhHh3rLozgMcp4i2b4vnyXAGpaz+gtOwuJnMih/fvYW7Og9Zg
xKj3MT05xt2KKhJTNhOnh81ZubinRpn2RzHc04TdMcuRYycYtfXjmZlEZ15HZrzB+IAAACAA
SURBVGpKuHdRCCFeyqo7A4ClKeLSWyXs2HcYv2MAm9MDgOKbpb3XRsmtEg4fO8lAawM+j5OG
9n6q7lcQdI9jcyoc3ruV0rL71FaUMj6nJWNjcpj3TAghXt6qOwOApSlio8ZDc2M9utgEorVL
66FrdoaG2moS1q0nY+suCvKLUKsUTPgZtg3QYFSRk51GZ7uLo/t3hmlvhBDi9ay6AvD1FHGq
Rcft+7VEacCvKCQkWFFpdCRYYslJ3ktNY3foIQ+qKNbEqIjbsB3rhg0kRj9iasqJKd6F1WIN
924JIcQrkxzAMpEk8OqweBaQ5ABEpJECsEwkCRwe4cwBSAEQkUYKwDKRJHB4rOZ9F+JVrbp7
AG+LJIHDYznGT0sxE2OMeqPrFGIlkAKwTCQJ/O74s5+ckge2iXfSsuQAHty9zbVr17h85cpz
/wqecwzyoLH96TeCHurqWuf/7aWmvpGW6juMufwvHLPuwV3uVTUs/Oxx2jl/8RKFVwqoa+54
/geDc5SVPVzyUk9rAwWFRVzKL2Bqxv3CcR8rv13+VO9hIYRYyZalADhm3Zw9e5aMFDPtPTb6
u1rJz79MW88AKEHuld6i6GYpc65pmlpDrRZbWlrmP+3HNjw2v3Va4kxG5twuggp0tjYyM+fj
buktrhffwhsILozZM2RnuP/JgT7gcZGYmsnHn3xKS30Nnhkn14qucuNWKQEFutsaKSi4wtjU
FLOuOeZmJmnt6AVgcmyYfSdOc/b4e5TdrWFmapwrlwu496AWUCi/dYPCq9eYmnEzMzVG0dUr
VNc1LcdXKYQQy2ZZCsDc1ARXLudz+eY90jat5f6DOj777BNq7t+lvb4CXcImPjh6ELQGGh5W
EvC7aWrpesaaFLrbQ2cJve2PaOobY6L3EUp0CtvSkrhXHSoaLocNQ3wySbF6hief/MXeUF3J
3/3tXxGzNhW1VkdOTi6+KRvtXf1U1Hfy8cdniTHo8bhmuHChgPUb1i18tqKslIKrN0nLSKXk
ZgknznxIwNHPwLiLtIxsNqyJoexuLTdu3Obo+2fIydy0HF+lEEIsm2UpAIZ4K5989i1+/Btn
qW9uw6g3olKpMZpMOJ1O1qakoFaHht6Vm8q5cxfZsnvvC9fZ1txC4tpk3HNzDPR10j08RfqG
RABqqmuZddqZmHVTW1238Jlte/bz2//snzM33ktrfQXdwxOYzWYCfjfGaAtqtRaDXod9ZAC/
Ogqj/snNw7xtW5hyBUhdlwQqLSa9FovFzPhQH2VVNcRaLaiUIKi1ROt1qFSr8qkaQogItixH
LZMGLl8u4G5dO1szMkhIiOby5cvEWhPJ3bGXO9fzuX6nEktsNNm79jM0PE7upsc32TSMDXeT
n5/P2OQcloQEYuIsfPKdH+Cf6CM+JQ2t383UlAPXXKghezAqhu9++zO+9Rvfw6TxhdYSZaCv
5RGXLl0keUMW1qRkxocHGbCNExOXhEU3TUHBZQZGp9ix5wBnj7/H/cpQ8YiJt5CQkMQPv/cJ
xTdL2b41g/MXL9E6MEVu5jpUfh+PGtuwWuLI3JDIxUuXsY1NSlt4IURECXsOoLKsGL9hDYf3
vVvP0pEk8LvjZWcBSQ5ARJqwF4B3lSSBwyOcOQApACLSSAFYJpIEDo/VvO9CvCoJgi0TSQKH
x9scX8JhItJJAVgmkgR+91388x+FexOE+LVEfAHoaW2gqXuIgN/DeweOsS7R8lbXa+tuZlaT
RGZqwhsZVwgh3paILwCTY8PsPX4aizJJ/q0aTuzN4v7DWtZvzmVrWhLDTj/rE4z02Jz4Z8cY
GLShNsZx8sgBGmur6LWNc+z992movMOsD06cPEGURv3Uet/bkkJTazcbM3LZlpNG1d1yxme8
ZG604jMEGertRBu3liRLTLi/EiGEeCnvRHrp9rVC/tNf/79s27GFkvJ7fPjRZ/Q31zA15aDH
NrLQ47ejvY39h48zOzHO9PgAncMuPvzgJKOdT6eLv77eeGsS2dlZVFXeYaCjHpcugZPHDqMG
xmy9lD9oIlEO/kKICBLxZwAAJ858zBrDGS7kX0OjN6LVqDDHGPAFly6nNRqJMemJ0urwul2Y
11jR6PT4/R4G+myoPBbS07KeuV7F42L7e/uIiTHhds9htSajNxpRq6Cnq5WkDZkSBBNCRJSI
LwAx8RbuFF9F8XnY/t5BvON9XLp8GbUujsQEK7fKKrnSqyU5YzsqT+g6vSXBimV9BjPV+RTk
d7P/8FG0bcVMTUHCfLr46+sdaqujs72VoEpHRu4OLl26THeTiV3bszl++lMmex/RNThG+vo1
4fw6hBDipUkOYJlIEvjd9/VZQJIDEJEm4s8AVqqffLpHcgCrcHwhIomcASwTSQKHx2redyFe
lZwBLBNJAofHq44v/X7FaiYFYJlIEjgySL9fsZq9sAA0Vt+no3+UhJRUju7fteidAGUld9ia
sQ6bR8/WzI2AQun1QiZcXhKSUjl2aM/TKwx6+Pt/uMgXP/5NNCq4VZRPxo5DpKa8eOZMyY2r
eAKgM5k5dezgK+2gfaiHew8bURPgvUMniPJPMUs0/Z2NHDly/Bs/X1Z6h2PHjyz87HHauXLr
HtFGAxvTMtmSlf5K2yOEECvFcwuAx2mnsc/Bb37+bQKBIKMDvTxsaGJNSir7duXicbsJ+n14
faHr3MPdTfii1/H5mV0UXTzH2HQOrTUPcTidbNn+HhmbUgA/jpFBWnpGyF0fTW9nD+bUbZhw
UVXbyObsreRmpD61LXM+DR99fIayq+cZGLHj8QTISE2mpaUVoy64kNDdmGCitrEN5/QMx0+e
Ij7GgMvpIGvbfrI3xFBQVMwHRw/i9WuYGrdzvegqcYkb2L8zi+Kbtwmg5viJ9/E47dyreEj6
lu3MzrpACVBX38zOndsWeg0f3Z23bL8UIYR4G56bBJ60j5KZnQOARqPGFGcmJzubusoqnnVl
e2LSQXpmKES1OW0doyN2BmxOPv3kY1oaqxeWy8rbQUdjLa11NeTuCp0llJTd5+TpD2ioqQLA
45qho6Md11you9fU+DA3i6/TPTpHUoKZirtluCeH6eq3L0noTo7ZiIpN5vjubBo6nvQYrn14
n4KCAhJT0nE57AzbHaDWcOL0GRx9zTi9kJWVQ6zWR01zO8UlpZw6+xGpKYkE/D6u5V8gNmHt
wvoaqispLCykvWvgNb92IYQIv+cWgFiLhZ6e3oWfy0quM+cLEBsX/czl42JiGezvA2B4aBRr
QhzxZgsqtQadbtEwGgNRipc2m5OMFCsAMzOTVFc9YH1qGgBBRSEQCIIqlK2NsySy1mwkYf16
orQ6NidGc6GonL3791J87ToB1MTEmAAwWyzoonQsntu0JS+PaaeTzIyNC69p9QaitBqijXoG
ulupbenGarYQCAZR6wzodRqMRiOumUmGJ5xYzbELn922Zz8ff/wxWekbXupLFkKIlei5BcBk
XUdKTID8/MuU3n/ImjWJdHd14vEqqFBhSUhAZzQRawodeDdkbmd6oIVLly7hjkogOd6E1RIP
QIL18ZMyNVit8ezclkX8mmSijCZiTAb27dzOuGOSsYkJAIzRseTk5GDSh65QJaxJZOt7R0mz
aGlo62Hf4cOMO6ZJijewxhK3kNA1mGIwGXRodAYssaFCZTDGYLGu4Td/+EPu3r6JSh/aZpMG
Cq8UMqO1sDFpDb6ZcVq7+zHHmMhLS+Fi/mVqG1vZlJ7Nj374fe6Ulof2IMpAb0s9+fn5NLZ2
UVtRjtMToLS0dFl+QUIIsVwiMgdQXPAVazL3sjPn6fsFK4UkgSPDm5wFJDkAEWkisgBEAukJ
HB7hzAFIARCRRgrAMpEkcHis5n0X4lVJEGyZSBL4xSSBK0T4SQFYJpIEfjFJ4AoRfiuuI9i0
Y5SvvjrPhQsX8Qafv9zQ8PD8vwKUlbzeDBzvrJOJqRkglPh9kYbaeh5vTn19HePDffQNj/Ow
tARXAMpKSl5rG4QQIlxW3BlA0bViPvn8Bxh0Kgh6uFH8JKHb1VRNr22MHdu38auvLpCTmcHh
k6fxuN143dOUlt3FZE7k8P5QwKy/q5XaxnZytu9ibYz2qZTw/dJi2u1uDh08xNjIENeKColf
s5F9O7O5XVoKGhMnToTaPg7bRsibfxrG8MgQmanr8fo1eNxuFMDjdoftOxNCiNex4s4ADLFm
THotarUGlUq9JKFbU/+Iw0eOYLYkkJ2Tw0cff0K8KVTDSm+VsGPfYfyOAWxODxDk/oM6Pvvs
E2ru38XxjJRwXm4uu/cdIi97MwoqTpw6y9hwF/UVt0nJ3EGS0Udz9/yZht/F1cJCCgsLcbr9
TxLFQggRoVbcGYDL6cAXUNBpVAz1tFLbPkbOWgv2YJBPP/6E6ntlaONDiV7Voia87rlZmhvr
0cUmEK0N1TWj3ohKpcZoWpwSdqEo3icfVBRAhSkmHr1Ogy5Kx5x7jsG2ZiwmHVnm0GfRmvjo
4zNogGvXC9/CNyGEEMtrxZ0BvH/sEBe+Osf5cxfQx1kXJXSNVNy7h9cfxGo1k55s4WJ+Po5Z
P5aEBA4dPMjYqJ1xux2/ogBqEhKiuXz5MrHWRIzPSAnHr11HW8NDGls7sVotAFitCWzbewjX
5BiOiXG8Pj8AFqt1oem71fIkBR1nTUCrAktCwjP2RgghVi7JASwTSQK/2HLNApIcgBAvTwrA
MpEk8IstVw5ACoAQL2/F3QN4V6SlmCUJLIRY0aQALBNJAj+bJICFWDmkACwTSQI/mySAhVg5
3lgBWNw/WD03y4HjR3jWBZDGuhoyt+9G/xLzj8rLb3P06Am6O5ppbm5nLqCwfkMaB/buWLLc
5PgIFQ9rcU5OEWdOItqg49BzxodQu8vLN++h16rZsuM9TIFJZjVJZKY+PZPHOTmGSm8m1qjl
zp3Sl+ojLIQQkeCNFICv9w++efUqZSU38fg1nPngOHdvFTPtCXL46DHiYuNQAQ111diGR4hP
2MC+XTlLkredjbW09dlw+0KXUNIyt5Acb+LhwCwHducxPtzP/Ye1rN+cy66tWZgT1vLh2Q+5
fv0qZ86c5HrBlUXjn6CtoZqeQTt7Dx5hjTmGgMfF2k2ZHN2Vw7mvCti7dSO1LZW0NMDRo4cY
Gh4nLyeDlpYWmqvLcUclcejgfob6uiiccrIhI49EEzR39uLzK+g1CkFdNO8ffbWG9UIIEU5v
JAfw9f7BoLB9937M6hnG3QHSMrLZsCaGsru19Le34VOgva0rlLwd6V6SvG1oaKS+c5hPP/qI
mEWnCcr8fwAl5ff48KPP6G+uYdavLFpGWfjX4/HHnFPUtdk4efwwZaVlC8u2PqqjsKCAuMTQ
5Yj1mzI4ujOTxm4bDQ8rCfjdNLV0kZu3hUPHTrN5fTJqnZGzH31KT1sLw32dpObuxuCdIfe9
Q7gnHc/slSyEECvVGykAX+8fjDoKc3wMen0UM2NDlFXVEGu1oFKePN3t68nbzrZmpvw64qP8
mBOTQaVCrVY9YzTQ6I1oNSrMMQZ8gWfMYl00ftDnwT46THVtA1k52QuLZOTk4pxykpmZAYDZ
bCFKH0VQUdiVm8q5cxfZsnsvECosKhXExsehUavQaUM3OWNjY9BqdMREm9Bp5HaKECKyvJEC
8PX+wZb5VG1MvIXY2FhUfh+PGtuwWuIWkrOPk7cJX0ve6izrmB5sp/DqFTSGuIUxNFEGzPON
37PWreHS5ctMqeIwLzpLsM73Hl48viE6gS2bE3E6p5hyziysK8Fq4Td/9EMaKu8RUBsXUsLm
WBPZu/YzNDxO7qYk1m1I42HpVTp7bVgtCfPjWImJs6DTqIizJqBRhcZ8drkSQoiVSYJgz1BZ
VozfsIbD+3a+9jokCfxsyz0LSDIQQrw8KQDLRJLAz7bcOQApAEK8PLlwvUwkCSyEWOmkACwT
SQKHx0rfdwnBiZVECsAykSSweJaLf/6jcG+CEAtWXD+A5XS//BaX8i9R29jCnTsv10dYCXgY
Gp14+o2gl4qquje8hUII8fasmjMAe38rE75ovv2t9wkEAhRdaeLmjWtojGaOH9xJ8c0nvYc7
musWUsoxOCiuaufIoUOsiVHR1NrNxoxctuVsJska98xexEIIEQlWzRnA6OgIuXl5AKGbswrs
P3KCmYkxgiztPbw4pZybt4XsrXvYsyOPeGsS2dlZVFXeARQ6W9ue0YtYCCEiw6opABazhd6u
zoWftUYjMUY9UVpdqPdwSzdWs4VAMLgkpRwSSgIXX7tOADUx84E0eNKLWLuoF7EQQkSCVXPE
WpexjaCjh8uXL/Owvmkh1WuxWomNX9x72LQkpaw2mHHZ2nhQ28gaSxyd7a0EVU9mejzdi1gI
ISKDBMFeU0XpdXyGZI7u3/7M9yUJLJ5FZgGJlUQKwDKRJHB4rPR9lxyAWEmkACyTQCAgSeBV
Nn64912IV7VqpoG+bZIEDo/lHD/JEs1aS/SyrFuIcJACsEwkCfzu+dHpbXxxelu4N0OIN2bV
zAL6JtOOUb766jwXLlxkzjVO6YPGcG+SEEIsKzkDmFd0rZhPPv8BBp2K4NwE7jkvM1PjlJbd
x7J2PYf2bqe05BZun8LJUx/QWHMPu2OWI8dOMGrrxzMzic68jszUlHDvihBCvBQ5A5hniDVj
0mtRqzULnb1KbpZw4syHBBz9dHV30zPm5tD+fcyO9WFzKhzeu5XSsvvUVpQyPqclY2NyWPdB
CCFehZwBzHM5HfgCCjrNosaOKi0mvRaLxUzQkMj7e+FqQT452TkM2wZoMKrIyU6js93F0f2v
3z1MCCHCQQrAvPePHeLCV+fQqrV8/OlJEiyxJCZncP7iJQiqOZvp5UZVCzpTNBuz8+gd6Gdq
yokp3oXVYg335gshxCuTHMAykSTwu+ebZgFJDkBEGikAy0SSwOERzhyAFAARaaQALBNJAofH
at53IV6V3ANYJpIEDo9fZ/xog470dZY3vEVCrFwRWwBmnA5UuhiijeE72Dw2MjzM2uSlU0Al
CRx5tqUl8bOfngr3Zgjx1oQ9B9Dd3sj5CxcpLr3z1HtlJSVPfgi6KS2tevwDhQXXiNJrKbt+
hWsl9144xtDw8FOveZx2zl+8xLVr1xgedyx5zzvrZGJq5qX3wTUxwL3atpdeXgghVoKwngEo
AQ/llU38+L/4AcFAAK97hpLbpeiiLZw8dgiP2w1AbdVdbKNjBNWhJi7DXU2kZO9kanSABw2t
7NhzgDFbH1W1jWzO3so6i4G7lQ8xxa0he+MavrxwmS3bdnP2/aMLYwc8LhJTMzm6O9Qmsrur
i7T0dDq6uhhqraPd7ubQwUMYNArpGel0dnSyxhzNuHOOAdsoeenJC+Pl5r3Hwy/Pwa7st/8l
CiHEawrrGYDf5SAxNQMVoT695bdL2H3oBMnGAPXtgwCMD7Qz7NLz0dlTqOczWv19vWRkp7Mm
eSN5W7bxwclDlJTd5+TpD2ioqUKnN5Gbk4Otow7tmlSysnM4c/LoU+PXPbhPfn4+dscs7Z2t
ALR3dJKXm8vufYfIy95MW1uojWR3exuTYzaul95l397dS8YDFQaDkfBc8RdCiNcT1jMArTGO
iaG7wB4A5gIQH2MimGChdyb017/T6SQ5aS0qtXrhEQ1qtYZgYPHkJRUzM5NUVz1gfWoalXfK
iE3ZhCU+lmAwtJxqUcD3sR37DnJs/gzgKYoCPPnQ49GOnziDUa9bMl5ocYVnDCGEECtWWAuA
SmtiR2YyFy7mY4qN58Ce7Vw6f56gAt/6/Ddock+QmpnLuXP5DHWYMK/NACAtI4OapmbWH961
0L93387tdA07UDRuspPX0N7bzfT0HDqNCpPaR9HNcnZnr2Pcq2NL+kY0UQbMsU+KiNfl4sqV
K6iiYohfu462/GvoNQoGjZcrhVfw+FQYTDEwP8Nk8XgQZM7jCf8NFSGEeAURmgNQOP/lLzn7
7e8RrQ//RKZHFaUELWnsyN648JokgSPPrzsLSHIAItJEaAEAn3cO1Dp02vCErRabnZ0lOnpp
QlSSwOERzhyAFAARaSK2AKx0kgQOj9W870K8qvBfP3lHSRI4PHw+H+ZYkyR6hXgJK74AjI6O
kJS0Ntyb8cokCRw+kugV4uU8d+JK0O/hyuVLXLp4gcHRiSXvdTRV0T/mWvi5vPw2EJrX/7Ch
HYCCC+fwBBVGB7vpG176+bHhIXwvceFpfLCLmsZu3JOj/OM//oLugdHnLvui9G5PawNOT/C5
n1UCHobm97GxrobnLVp0+TxF14ooLr0LQS819dI3WAgRuZ57BnD/9k2ydx8hc30CgUCAmsq7
DNqnOHTsGD6vB01QYXx4gIrqevpHxzh6NDSvv6etlF1ZifT2DtDRO4q9rZGdxz+i/NYNpj1B
Dh85yIVf/JLErBwO7D/MUHfjc3vr3qus4YNvfYdb+T9nzq9GpVK4W3qLWR+cOHmChqq7jE5M
s3vfYdoe3FxI7+Zlpy3Zl8mxYUwbtjA+2LOQ9l2flEBp+V1M5kSsWhfFVe0cOXSIpNg4VEB1
5V1GxiZYn76FHbmh6acqvZGzZz7k4pdfMsdB4kzGZf3lCCHEcnruGcCEBzLXhx694J4YZGha
xYenj1FSXLKwzK3bZZz58CM2pYSWQ6VBqw7S1dbKyU+/TW97K1OeIBajhrSMbDasiaHsXiN5
udl88OFHxChTL+ytG9QYMGjV5OVu4eDR06hnhlCiU9iWlsS96hY2pKaRlrqe8jtlS9K7z7M4
7dvZVI0pcRM78rLJzdtC9tY97NmRR397Gz4Funv7OfvRp/S2ty58fqi7gwtffcngjBeDWqG7
vf11v3chhAi75xaAGLWPwXEnAL65OeLNZnSGaLSLeuZGGUzoNGrU6ier2ZgYQ0l9P1kZaQTn
xtGo9cyOD1FWVUOs1YJKCV1fUVDhdbtDvXVbesjJTiNmTQpH9+9ENR/bVYLzN1Hnh3TPzTHQ
10n38BRpydEUXS9Hb4pDr5tf4Gvp3cdcLg9q9dLXt+49hlXn4dyvLhEKFStL0sKx5jg0ahU6
7ZMbmuvSMvn8uz9g61oDdpc8+EEIEdmeWwCOnHif+8WFXM6/xLTWzERfE5cunCdr6w5MMfEY
9VrWmKO5XFDA5Kxv4XM5W7YSGx2NTgWJ5hg252xBb4pB5ffxqLENqyWOzdnpXL14EY8hgcRo
LVNTTqZnn+6tq1f7mfYEMJhiMBl0ZORuR+t3MzXlwO2DGL1Cc9MjTHGWUHq34SGNrZ3cuV1K
EAh6Z8jPz8fm0pBg1CykfVHr6W1vpW9oFHOCFa3RjMvWxoPaRuKsCWhVYLWEzmqsCU+2yT01
QX7+ZaaCsSQYtVgSEhgd6KK5q5/u5loGRpxv+NcjhBDLZ0XnAJzjQ5Q8aOHbH0XejA5JAodP
uGYBSQ5ARJoVXQAA3C43xgi82SpJ4PAIZw5ACoCINCu+AEQqSQKHx2redyFe1YoPgkUqSQKH
x9fHlz6/QjyfFIBlIknglUFSwUI834p9hP3oQDfnvzrPxcLiN7K+YdvQM19/WFrC12d0OifH
mHb7AaiprXkj4wshxEqzQs8AFIpLyvnBb/0YlaI81Su4ZlFKd2vGBkpLb+P1Bdhz4DjO8REm
x4ZISE6lrbUJdZSJPduy+fKXX5KRlcf+fdtR6eIw4mLKr8XjdqMADyvKF1LF965dwB2VxKGD
+4mLiQOC3CstYdLl49jJUwx1tzIwaENtjOPYvh3cul2Koonmg1NHpSuYECJirMwzAMWP2ZyI
Vq1Co1E/1St4cUr33u0S0rftY+PaWMYmXJQWF6Azp7A+OZGcnFx8Uzbss1HkZmXxyScfMDtu
Y9Qxi8thZ9juWBhycao4N28Lh46dZvP6ZLrb2+hrq4PYDRw7uIuSknI62tvYf/g4sxPj2Ho7
cBPNvj3bw/iFCSHEq1uZBUClwTE1sdCH93GvYGuCBc+ce0lK1+vxERcXTXB+MlNKai47cjNo
ra+ge3gCs9lMUAnMr+s5f5/7Z59KFSuLksFzcx7iLRaiY+NRBTxojUZiTHqitDpSMreyZaOF
/PPnmJy/bCSEEJFghV4CUnN4/w7OfXUBTZSJ4+8t7RXc6Ak9udOaYCUvZzM3rxXhGBvkwAdb
FnoEW5OSaa1tJ+ieZl2ODkt8NPkFRRzev52KW7fR4mf7gZPorAlotfonqeJ4K+s2bObaraso
+49gSUggI3cbFy5cpuWhmr1HTzHa3wGAJcGKfaiHlq4+TLHxGHTh704mhBAvK+JzALbedmqb
O3GMj/Pt7/+IGP3KOAhLEnhleJuzgCQHICJNxBeAlUqSwOERzhyAFAARaaQALJP/v707+4oq
Tfc8/t0xQQRjRDAjMo8iKSgqOONsilZm1qnKqnV6Wuv0/1EXvfq+73qdrtO9uqqyM09VVmUq
zhMITiCICCijgIDMQzDFHNEXKEqKAwoGw/O5ycqIHft9d0Tlftjvfn/7lSSwb6znYxdisVbo
PYDVT5LAvvEp7SdGhxKo1y1xj4RYuaQALBNJAq8+/+1fiticFOHrbgjx2ayIaaD2iSH+/tMZ
Ss6eobt/aU6aLxO8z/v7P2j7zuZ6zl+8zNmS81imrItqQwghVqMVcQXgts8QmZBKweYU/vzd
X/kP//Gfqau+M7dWcFdzHV19w2zdUch4fxfdPc8JMMewc0s612/cxI2KvfsOYBl4Rs2jx2Tn
7iA4MJj+7g7+9vM5MrNzKczLpLziHsbIWAryt7zRh/HhfvL3HSTYOcy1O7Xs257GncpqwqMT
2JwSza3KGqambZhNIYxZpig6dJjgwGD6ejrA34Rnegi9aQOmIH8ffINCCLF4K+IKAMALqDU6
UiNDGejrmrdWcO2jBgp37SLAT0t7+1P2Fh1mqreZMZuX1NR0gjROap+0UF5RybHjx4kwBdLR
2kJUXCKpaekc3r+bshtl7Dt8FPdYNz0jMwA863xK/+CrK47KinLOX7pBAbZ+mQAAIABJREFU
YvJGykrLKNyzn57meqanxrGpA8jP2IhbG0L6BiOdvaN0tLYQGRnN9fM/cet+A0Y5+QshVpEV
cQUwx+uhe9hCmss2u1awXiE9LRFTbjoP7lagCYlD4++PTqMmwKCn52kzHb1jpEcaGfK48Tf4
o1ap0PvPPxErCqBoMPhpMBpDsdlnl7D0eNzzwsFZ2ZncvNLLxpgIGu5OUf/wAeaYWBQgMCgI
jVohMNAfreLE+WLylEqrQ6dR0PgHyHOAhBCryoq4AlDr/Olqquenn86Qt2sf4RuSX1sreJrK
u3dxuDyYTKHYLKOcP3+OMW8QCdHhOKdGaO7oJjQwkOgII+fOn6f5aQ9G8+yavgaVk8s3brF5
UzI/nTlLc4+FxOgQABKSUokKn90uMMSI2RzBb785wfUb5ezYsY2BwRGGhkZQaf0JDTSg1RsI
NOjn1ig2ms10NTeQU3CY5HADvcMWn32HQgixWKsuB3D9+hUOHjzi6268lySBV59PnQUkOQCx
2qy6ArBaSBLYN3yZA5ACIFYbKQDLRJLAvrGej12IxVpZN4HXEEkC+8aHtC/rBAsxa+UWAK+H
waERIiLCfd2TjyJJ4JVL1gkWYtZ7C0Bncz0N7T3g9bK/6NCnPyvF46C2oZVNyXFMuVSYQgIX
3Kz61g2C43PounOTsSk7AaFmdm3f+tbdDvc/JyQyBu075mLW1taSm5v73i5W3i5jfNKK2i+I
ov27US2wT9tYL/XPZ8jflPre/QkhxEr03gIwPtzP9v2H0TvGKLlwiW9OHKC84g6G0HAK87+g
vKwUq9PL/gP7uFdRwZTVSu72XQSqndypqsEQHMbewnwaH1bT1TfCngNFBBv03Cu/TuuQlYKd
BQRpHDxsbCV98xbSEjYAHjoHLPx6TwRXmh9w5MgxABzWybm2C7ZuepUC3rubn//9r4SnprMj
fzszkzMkJcXS3taJAijYmXbpCAoJwTlj4W71QyYmJti6cy+Bage3793Hq9Zz9MgBVIBlxsbR
Y8dpb6ymrPIRyeFaHjd3EJecQXZaAncrbjI41I8p6Yvl/XWEEGIZfVgOwAtBoeGE+qkoLy0j
J78Q11gPXd3P6By2UrA9HwUHIxY3x44c5tbNcrR+BjLS0+lrq+NZbxft/TMcPbQfPw10tLaS
lZFBbn4BWWnx3Ltfx8mTJ6i9dwcv4HVOoTPMDv3YLKOUlJRwu7J2Xtv9E85XKeCmTrIy0jh0
9BhRZn9aWp8BXjpaW2l7Uktz9whZaUm0trXjnB7H4tJy/PAeHtQ0cvX6TfYWHcE+YcH7+gED
yZtysQ/3EmKKIC0tleqq27Q+qkRrjufQ7p1L/VsIIcRn9cFBMId1kkmrC6ttmieNj9AEmTGG
beDAtkwunS+hf2gCgyEAtVaLVqWi6nYFo1M2jCFBWKdnCA0zodb6odO81uSLCUh6Pz2KokJv
MLw6CXs8APiHGCkuLmbXjtx5bY/3tPGwqQNTqBH3i229L7O43lf/UDTBHD6wG9Vr4zihxlDU
Wi1qvCio8PfT4PF63jjm/s4WtMERXL9yFTcqAgMNTE5MEBkdjUq1IjJ0Qgjx0d57FgsMMXLr
6gXOX7zBoaOHKdi5k+HBIUaGhpgcHaSmvgmtIYBAgx+tTx7x09//TuaWLURGhNHb1cHwpI2I
jSlMPW/jfEkJo1NOjGYzIZExtNTX0NjcgdkcwLlz5wgyhaMCFG0QDusQAGaTea4vr7etDza+
lgI2kJCWxKUzZ+gbtjI9/owL5y/gF2zCaHo128NsNqF+keoFNSZTKHl5WZwvOU9H78Dcdga1
QknJWWoed7NvVx5hxmDaW5vxKFrSc7Zx+2oJV29XYQwK4GHlLSbsbsrLy5fuVxFCiM9g6XIA
nhmuXq/j8OGCJdnd4wd3sOqj2ZqZuCT7e5v6B5X0Dowy7fTyzakTS7ZfSQKvXMs1C0hyAGK1
WdFBMOuMFb1B7+tufBRJAvuGL3MAUgDEarOiC8BqJklg31jPxy7EYq3cINgqJ0lg33hb+7Le
rxBvkgKwTCQJvLLIer9CvEnmMi6gs7mecxcucu78BaasDuwTQ/x04drse031WOxuwMvf/vK/
GZ12+razQgjxkaQALOBl+nnfrnxKLlzCbZ+hu/0JTV0DjI/0Y3d5mRjsQmsw8eBhg6+7K4QQ
H0UKwNu8ln4GyC3cx4O7N+eCarW1Dew9eoKJ/qe+66MQQnwCKQDv8DL9DIBKQ37mRmoedwDw
rPc5d8uuMjw0wMi0w4e9FEKIjyM3gRfwMv2seLwcOnoYtXcKYxCkpmRQ87AexTZG6pbd7MzL
Ynygi2e9fTT2d7F3715fd10IIT6YFIAFpGRvIyX79VcCyJ5dR55v/9N/BSDcPPuwutDIeEIj
gbT4z9pHIYT4VBIEWyaSBPYNX+YAJAgmVhspAMtEksC+sZ6PXYjFkiGgZSJJ4KUnaV4hlpYU
gGUiSeClJ2leIZaWz6aB/jJt+24erly6ysT48KtpmUD9w0e8uYwLeN12ng+Ozv370PNOLlyr
eLErF9//+S84FvigfWKIv/90hpKzZ+jul5O3EGJt81kB+GXa1uN2cOPqFS5fK8Xp9vKg6g4X
L5zjUVM7U0M9aEMiuH7hZ0rOX6Cjpx+A/r6BuWDWcN8zLl28SFP7Mx7XVvLjP36ipu4xADMT
Y7Q0t2N1eehpbWBkZBKnF5rqH3Dp0mWGx6cAcNtniExI5cSJ41y/fBG318Pd8htcvHSZKZuT
5uYW8LqorKwGoLWtlZYnDdy4dpWy25Wf/TsUQohP4dsg2Gtp20f3KojNyGVLShQVVfV0dHVz
5NiXdLU2YzDFsm9HDhlZmRTsOUhCbNQbuyqruMf+g4eor60mIyuTtE155OVkzb2fl53Mg4Y2
6lufkZ0ej9c5RV1LH/v3FlJRXvF6l1BrdKRGhtL0uA6CNrBn5xbKym7xpLGRoe52ym9XYRkf
oO3ZMG2tLWwv3Mv06Ai+GfEXQoiP4/Mk8Mu0rd1mxxQaQojJhMNmJyg0GLVKQavRolKr59b0
9eJFUd7cz9TUOA+q7xO78eUKYvO3C9+YxkhnI25Fj06l4HU7GBrs58HDelLT0+bvzOuhe9iC
4rITYjQSEBSC4rYTHxnM5btP+ObkHs6evUxmdjYavZ5Agx86je+mPgohxMfw2U3gX6Zt/bFx
7tJZVHgoOlbM0+Z6AExm09xnYjYkcqX0Et7tu0iOj8YY4s/5khLMkXHkf7GZp/1jeNVWVP7Z
zPRd5/5DP/K3bMJfHwh+/kSaAjElfIF9oAOt3kRmQjgTExa82gAA1Dp/upruMdzRTN6ufSTH
mvj553M01ajYtruICH8Xj59XkpSSwc3bdcRHBDFsnF2z2Gg2sUBdEkKIFUtyAMtE1gReeh8y
C0hyAEJ8OCkAy0SSwEvvQ3IAUgCE+HCSA1gmidGhkgQWQqxoUgCWiSSBfeNzth9hDCDSGPBZ
2hJiOaz7AjA4OEBEROSS71eSwGvftwez+d3B7PdvKMQK9d5poPU1lVy8dIkLV67hcC2Uu31l
ZqyPispHDPc/x/nyzoLXSdX9GgBuXj7H8KQDm2WQxrZnn9TxhroGPEBnSwOdfR93oh3pfUpt
YwfW8UG+//7f6egZfOu2jukJRi1TH9lbIYRYed57BdA/OMGR48cY7W3j0rWbFBXkUF5xD2Nk
LAXbNnG74i5jExNkbt6KpaeZpPQcfv7uT4SnprNjeyFRYSH0dHexfdsW+p4/Q2luw+QZxH/D
FmoqbzE4OklufiEzY/109/Zic6o5fHgfD6vuMDA8SmxSJgkRQdypqsEQHMbewnwA+p73kZgU
Q0V1E//8u3Rul5fP9SMyVDfXx01J0Ux7/VDbx5n0+BMeoDDj0RMVFszdqloOFX9FackP2Fwq
FMXLnfJSpp2wb/8+2hse0vF8gIzsXHoa7tI6ZKVgZwFZaYnv+daEEGLl++AgWHhsCorXRtmN
MvYdPop7rJuekXF6+ib48sRxmhofkLNjN7FhJrIy0jh09BhRYbOrqATp1HQ/a2fjlgNMDHTS
1T9BQnQoGzYmkrgxllu3K2hvaSM7dztGzTQjM655SWCtn4GM9HT62uoYts6Oq3tdM/zxf/1f
io4dR/E65vXj9T6OWp1UVz/kUcNjGuvrePTgARp/PQAetT/+GhVZGZns3H0Q1dRzvAHRZCdG
cPdBExExG0hNSuRO+W2yMjLIzS8gKy1h6X8FIYTwgQ8uAJNj/bjdWlA0GPw0GI2h2GwuQkKN
KCo1Wq0KjebVBYX3tVhUekocFy6Uk56egkrx4lapULunuXz1Fn6GYPy0Cqh0hIYEotNp8XqZ
lwSuul3B6JQNY0gQHs/s2JKiMfCf/8vvuXHpAl6Y14/X++hSBeG1jeNBiw4PI1Y3YYGzNwm9
nhc3aV901Wqz0fOsnY5+C0kbwrl65SIqrR8Gw4tZLV7vq42FEGKVe28BeJm2vVFRw+FD+9i8
KZmfzpylucdCYowRk3H2r3yzyTz3mYS0JC6dOUPf0DgAG5LT0AYEYjZoSYoJwxyVgKL2I9DP
y5PHDRiCjRhNRgACQ0z4aRRMLxK2JrOJyIgwers6GJ60oVXPnoCNJiNBxkh2b02joaV3Xj/m
9TE6hNiIEMI3JpORHEuQKXqun34qF5N2N/6GQAz+WpIzNqNxWbFYxpixOQgODqKl+QlaPwMh
kTG01NfQ2NzO7Zvlc08hfVh5iwm7m/Ly8k/8KYQQ4vNa10GwiZHnPGjuY3/h1iXftySB175f
zgKSDIRYbdZ1AVhOsiSkb6znYxdisXz+NFAhhBC+se6DYMvlxoMOhidsPmnb7XKh1rz7py3K
S5QUqxDr3JIWAI/bhduroNW8e+jD6bChqHU4HXb0ev1SdmHR7DYbfv7+S/656w86VvQ9gOzE
CCkAQqxzH1QAvv/TvxFsisCp0nP6xKG3ToTsbq1nRreBzKRwAJwz49yoqKSzq4uEjfFs357H
8xErquln+EXn0vTwNieOHgHg0rl/oGj0jI5PUfyrXxHo/4nPc/HM8G9//HeiY8NRG0I5emD3
gpuVld/g6KFD1Da0kpuz6Y33y69dxupRUPCSX3gAY6Bu7nPbcrKZJgDXaB8xGdn4y4CaEGIV
+aACYI6O4cjh49TeuU7zsyGmh7rYunUbVdU1JMWaKb9Xhz4ohKwNIaBAzd1bbMjYQqQxlKNH
j3Lp4lWOHjuMx26hvXecABQUBZTXluxS+ek5cvg4E8PdlN+qIivOyOOnnbi8OnKSI9CYEulv
rSYgOg315HOCwmO4dqOC4AANSZt2sDk17he99hIbn8axo7s4e/YnPI4pSi7ewOVysPfgcYY6
6mnrGaZ3aBhUGtw2K2MD3VyvqMKrqCg+fRp/jQq7Q8WhE4dRv9hn2eVzTHtUTDvcaAC7fYab
V68S3tHNjh2Fc+E3IYRY6Rb1N2tMZBSTkxOMjA4BMDI6ysTYCG6VlpxNs389P6wsY8ypI9IY
+MbnvW4HI+Pvfp5OsDkKr3UCY1gYOrWGzranhEeEU1/fyIhlmo6mxzR39BGscZGQuZnTxcfo
aZ99rlBjXTWlFXfn9vW0pYE//vFfCY9OQdH4E2EORet10tTRSXPnc04VnyQ5LhLwMj4ywr3q
Ooq/+po9W1Kpb3o622fPDBcvXuTixUuMDXRj84/gy+MnCDVocFqnmZpxkZWRwaFjx+XkL4RY
VT64ALicdiru1ZAYF4vL6cbttGOzOwmPS+XLQ3u5fukSLi9ExcQy3NeL+yMml3q9Hu7fvE5E
YjqlZWXsKTpIbKQZf2M0UwPNaAMiUDzTKFq/2WGo2cuIubV/N32xjQN7Cub2l5SWTWHeJkYt
ozx9XIs6ZAPb87IBBbfLjRcvNqt9bnud2svUtA3LxARa3ez4vqLSc/z4cY4fP4bBT4PD4cDt
cuBwvnownqJ4sDtcL5LCQgixOqj/8Ic//OF9G/V2tvGkpYOthfuICgthbLifx82dbIiPJ0Dl
4V71A8Jj4kjcGENYVAIJUUGMTrsJDTK82IOCyWwEFFQaHcaQQAKCQtHr1JiMswlg2+QYVTUP
McelkbcpGX+tQuX9WkLMESTEb0CDh8S0LMxBfoTHJhIaFIBa509IYAAoakymX/z17VVApSZ9
UzZYxwk0x9LV/AjLjIuEhASiTQHcvleNMTKajbExoKjJzt7EnYqbTLr92Lk1GwVQ3Fbu3K2k
paWF2NQvsI9087j1KfEJiUSEm9HpA9kQF8Xt8nKCjBEEBcwWjms1Txm2WJful1piyzULyO12
z3skyOfmy/Z9fexCLJYEwZbJSk8Cf8j6uh/D12EoCYIJ8eGkACwTSQL7xno+diEWSyYuCiHE
OiUDlstkpSeB12LbH9u+pKLFerVuCoDX48bmcKH3/zyX6Cs9CSxekVS0WK/W9BDQT3/9gStX
rnC17A4e2yg37z+ee6+r6QH/41///NH7bnj8+P0bCSHECramrwD0gWaOHDkMgHtmaN4jLBqa
n7ElKYz+cSvKRA837tWj8jjQBwQwM2Xj699+Q+n5EqxON1/s2MNodzM9g2NYp20UFm7l2rXr
PB8YZVvmRm7efYii1nDq1Im1XVGFEGvKmj5fjQz1cPHiRcpuV8573eu2MzBqITQokJraOmwz
U2zJ30NORhybdxSRviGEcauHyKgIDHoN9fUtjI5O82VxMelxIfiHbSQ9I4MjB3Zz514ViSnJ
qOyjPBteufP+hRDil9Z0ATCHx3L8+HH279ox7/Wu5gZiElLxC43AMtD9xucUlcJEfzt9M2p2
FW6ffQ6Qopr3/CKHw47XCzq1CkNgMHn5hRgNa/qCSgixxqzpM5YpxI+SkhK0hhCO7N1GSsLs
esBudQBF+/LQqRTUHg8B5lAMmgDQx6EN1KGPSyYwIoan7TepqrWSlpKIyutEAaLikgnUqUiL
i+JK6S32Fx3i5q07KGodu2PifXvAQgixCBIEWyYrPQksXlmqVLQEwcRqIwVgmUgS2DfW87EL
sVhr+h6AEEKIt1vT9wB8SZLAvrGc7WcnRizLA/SE8JVVVQBGR0cxmUy+7sYHkSTw2vPtwWwp
AGJN8fkQ0Otp3XcZ6n1KY8uz9+7vXQndzpZ6vvvhb/z0j5+we9662VvVPqxd/IeEEGKF8vkV
wOtp3eG+zrn1hYt25nLu0jX8gozkZydSXdeE1ebC7d3CuR+/Q60PJtgcQ/pGE9V1T7DaXBTk
b35nQvd+XTO///afUAC308rPP53D7YUdew/T2VjJ2JQTmxuKD+Tz4/kb+KlVqP30uOwzHDr5
NW6HC6/byblzJajUGkxRSWwwqqmqa0Gl1nL6tCSBhRCrh8/PV6+ndV9fX7ju/m0KD53g5NEi
gkJM6P10TAx2MjLjQh9i5uTJYsaHe+e9pzXFvTOh66/Xzz0Oor2pjrS8fXz1q2Lq7lcy4/BQ
XHySYJ0Ol8NGfMYXHNieQ2L6ZrbnpDEwaGF8ZJietsdEJ+dxrKiAwSELdQ3NfP31aVJjAnna
N+G7L1IIIRbJ51cA5vBYjh0/AsDk5ARfxqfz419/IistBsvEFGaDmvLrpew8fByNwwKAFy8e
lwOr3fnGewsldINeJHTdVgtD45MEahS0Wh2jExPYZhQ8Ki2oZtcGVr1cYPi1Bwe9TP8C+Bv8
ed70nCh90OwLL54yOmGZJDTRN9M+hRDiY/i8ALye1t2WmUhN/WMS0jPYumMLZWVldLcb2Lr1
C+6UXcNgMBOgVfG8s50Ll9zs2nMAP6dl3nvvSugeP1nMzZu38ShqDh05SE/ZDcr6POzfv5/B
57P3F5JSk9EZQoiPNmDwhyinFr2ix6A24JeaRviGJNInG+jtG0KtC2Dfzj2UXrtCiCmKDWHy
SGEhxOqxKoNgDx7UkJe31SdtO2fGuVJ6G7fLza4DBzEHL3zSlyTw2vPtwWx+dzD7re9LEEys
NquyAKwGkgT2jfV87EIsls9vAgshhPANn98DWKskCewba+nYJXksltu6LgDLeckuSWDxqSR5
LJbbmh8CKr92mcsLJY0905SW3n/7Bz0zlJZWLW/nhBDCh9b8FYDdqeLQ8cOogYHejrnU8Fen
D4Ki0N/VyvNJFU5LNyOWacKik9iemwl4sTucwGxquOTsy9TwIZ42NbJ3727u3L5NRnKcrAks
hFiV1v75ymXlXEkJ127enp8otrrpe9ZG6b16tmxKpLmpjfj4BFqf1L2xi/mp4Sqmx4aYtk4z
NDopawILIVatNX8FgEbPyRdXAJfO/DwvNRxiNGObGWVy2o5XrSEiMpKCAsOrz76YIOv3i9Tw
9twMvv/ue/Yc/RVdD8vfSBwLIcRqsObPWEkpyXNPdZiXKNb5kbMlh7iYUJrauziweyfV96uJ
iNk4u7Giw+McpaSkhII9RThr786lhoP0GpIS+0iLCyPBJGsCCyFWJwmCLRNJAotP9b7ksRCf
SgrAMpEksG+s52MXYrHW/k1gIYQQC1rz9wB8RZLAvrFaj11Sv8IXpAB8AqvVil6vX/A9SQKL
xZDUr/AFGQJawMt1imvqnrxzu1ulpZ+pR0IIsfTkCmAB+qBX6xQ/a3tMbVMHWl0AB3bmcPH6
TbwehS9Pn0JRFKyWYS5cK0etNXDq1DGpqEKIVUMKwAJGB3ooKSlhQ2Iq7fUPyMzJpfZeJfeU
KcJjE3GPdtHU1g3AzNQEMw4Pu7ZtlpO/EGJVkXPWAkyRGyguLiY3OwOVWk2w0Uzhvt0Y/HTo
9AYycrYSGxkKgH+wmW9+dYKGu9cZnHL6uOdCCPHhpAAsICUlee5/Hz58iMaHtXT2DJJXsI/p
/k7q6p+g0+pISk3D63FSUV6BISIBc4DWh70WQojFkSDYMpEksFgMSf0KX5ACsEwkCewb6/nY
hVgsGQISQoh1SmYBLRNJAvvGcrcviV2xlqz5AuD1uLE5XOj9F3dp/rGfe0mSwGuTJHbFWrJm
hoDelt712Ea5ef8xz1obGZl0fPD+Xn7uQ9RVVvCnH88vqr9CCOFra+YK4PX07uMHVXT0DxMQ
HMaevMTZBWEUL063h9p7t+geHic9K5e+1jqmHU6SsvJwWZ7T1TdMRMxGtuduBkAButufUFXX
gkqtpfjEfs6cuYhOo2b/iVME6VRYJ0ZoH5wmPFjns2MXQoiPsWauAF6md2sbmnjQ+ISE+Hja
n7bNvT89ZcHqcPGsb4hTJ0+SGmOgtc9CQlIydbUPGB4aJCAolPTkpHn7rWto5uuvT5MaE0hr
5wDjUzOkZOUQpFMBXi6eP09hYQF2ux2ny/WZj1oIIT7emikAr6d31YA5PII9hTvf2M7ucOLx
enG6PGhVCpGRUezYlkfezr3kbkrl/IVL8z/w4l7AhGUSfUAQ//TrbxjsqOdJxxDgJSE5na62
JgYH+hmdmP4sxyqEEEthzQwBvZ7ePXTwANUPqgkyRpASH0VKQjTBWgfaQD8Kd+Ry6cIFMr/I
Z+eWNKqrq9mYkkn/s6d09g3yRV4eAIo2gJSEaCKyYym9doUQUxQxof6U3aoAVSCJG0yAirzt
OwAwhYURaQrxxaELIcRHkSDYMpEk8Nr0rsSuBMHEaiMFYJlIEtg31vOxC7FYa+YegBBCiMVZ
M/cAVhpJAvvGcrYvD2sTa41P/ku12Wz4+/u/8brLNkXrs0Ey05IW+NQvtnXYUTQ61Crlrds4
HTYUtQ6N+v0XOm/r09s4rFM0tbQTFZfA6PMukjI3o1O/6oskgdceKQBirVn0EFBPWwM//HiG
K1cuMzb1Klm7mKRt6Y3yhV+/do2IqOgF36utrQWg4fFsOrfh/k2Gre552zRUlXPmwmXO/Pwj
dU2dtD2u5tmw9YP7ZB3p4f/85QfOnf2ZW5WP3rl9ZeU92tvaqSgtJSAkiOtldz6oHSGEWCkW
fQXgdjn5YmshmYnh2C0DXLvRiGXKRX5WDE63h8rbZYxYpgmLTkJtH6FncAzrtI2vfvNrHt4t
Y8hiZWR0hq6Wemqbugg1RbB/93bwuphwKJiDtNy5fY/cTQlcqKjnq2OFVD1sR6V46O/u4Nq1
6zwfGCVCp3D94nk0biuHT36DMUCLy2mnYP9BlPEuqhq7SQpXoShQeauMgbFJQsxR5CRHcb2i
Cq+iovj0aeru3Zzrk9fjJmVTDntyszhz5hxND600dw+g1YdyMD+dv50vxeCnYfO2Xej8tfR2
PyU9MxuCYrBaHi7H7yOEEMvmo24C3624QUlJCZPTVp72jfP1qSMvkrZOmpvaiI9PoPVJHaOj
03xZXEx6XAjjM1P0Dtk5+eUJIsNCGB4aRqcPYFNWOgAexxQ6QxgoGgYG+3jS8ASbfZqnLU/Q
G8MYGR0lKi6R9IwMjhzYDcDBY1+SvzmN/sHxub7dvHKR81dusmFj7ItXPAyOTHCquBjL8AB3
q+so/upr9mxJ5VFj47w+ATTW1nCu5AxRG5NoejbI6eJTBDrHGZuyEp+Zw9df/4on9Q+IDItg
x+79BJkjiQv1w0/rx/zrESGEWNk+qgAU7CmiuLgYg1YhMyuDVyPfCl61hojISAoKdoAy+xe4
oigoioLL6Zx9yqbdQfKmLezdmcvFC+dmO6L1w+OYTdJGhehp7J9kV1YcZ8vqyUx6NSzkcNh5
OXFVUUD1i3sA+w4f5zfffEVH08uHwinY7Xa8eLFZrejUXqambVgmJtD56+f1CSA7bysni0+z
IzcLt8OGy+Nl0mpHPfvkB6Yso6g0/iSkZJK/bRs7t+UC4HQ5ePvdCCGEWHkWPQQUYo7GoA0A
QGsIIT7aAEBYVBzaQD8O7N5J9f1qImI2kpSShAJExSUT6GcgOzWSi5evsSEhgcmxIR63dJCR
tWV2xyo9Tvs4Li9szt2Kf+8o8Wkb2TEBOpVC6oukb1pcFFdKb/FFShIBOhW6sGgM6tn+RG1M
pqr0Mmqtjv1FB3BOD6MN9CM/L5sL5y6Qs20HidFGym6WotaHUJR7M6+GAAAGRElEQVSbgm5m
dK5P2oBQNkYZ5o51T0E+Vy5eICp1MwEahYbaKiYHotl/oGjed+JxWnF51TKnVgixqqyoINjg
s1baR5wU5Gb5uitvsFsGaRu2sSl54xvvVVXcYEPWNmLMwXOvSRJ47Tnz37995/sSBBOrzYoq
AGuJJIF9Yz0fuxCLJaMWQgixTkkSeJlIEtg3ftl+UV4ikcYAn/VHiJVsHRUAL1arHb3+w9O+
i2G1WtHr9XP/LknglSE7MUIKgBBvsaaGgLpaG/h/P/yNMz//TGNr1y/e9XCrtOyj9uuyT/PX
77+j5Nw5Ll4rA4+D2keN87a5VVr6UfsWQghfWVNXAFUPn/C7b/9pbj5+Z/NjHj/txOXVcerE
ARRF4e7tO2wvLKTkx+85ePo3ND6oIjEuiuq6J1htLo4X7eRR+xAFW7OoqLjNnj27eVR1h7z9
J0iJNr7Yswe3zUpbQw29I9NoDKEoiqQAhBCry5q6AvA3GHDNWDh/9u9cvfUQY1gYOrWGzran
cyndII2Tts5n2GdsND5pZ3BwlKAQE3o/HRODnUxrTXS11DPc04ZbOzutc2rKRkRYKNX3bvGn
v/wAeBkfGWHKMorXYGJXfo7PjlkIIT7WmioA7hkLY3aFI0W78Xi9lJaVsafoILGR5rlt0rOz
ufSPv7Ht8Cme3r+MeUMK5ddLySvYQ0r87OMjclJj+cuZcvLzZp/+mJAYy+07NWzbuZvI0MB5
bWZlZXy+AxRCiCW0poaATpw8xc3yWzg9kLe9AFuUH9euXMUcHYuCQlJqKtoAM9u27yAxxszU
lnySN6VgjdBxp+waBoOZAK2KsC9yqW4ZJEA3Wx83ZuQxNnWPCxcuEBmXBC/2ZdB557ZJSk3z
4ZELIcTiSRBsAdcvlZCxbQ+xYaEfvY//+XMVnQOWJeyV+Bj/8mUeidEf/zsuhtPpRKvVfpa2
AFQqldx7Ep9ECsAycblcPvuP0+VyofHRXHxftu3r9j9321IAxKdaU0NAK4miKD57FITH41mX
bfu6fV8fuxCLtaZuAgshhPhwMgQkhBDrlFwBCCHEOiUFYJl5vV7euMbyelnqC68F2/lMvMtw
PIvh8Szc9ufoky+/dyE+ldwEXkbdrY2U3W/A7XTx+3/+PTq1gtdl47s//4BGp+aLgiIyk2Lf
v6OPaGdmbJAzl27gr1NjiklkX8G2JTiiN9knx/j+72dRK1B04jSx4a+mXJ7/+3foYzdTtHP5
ktJ3Si/TNzqF4hfM1ycPA2CbHONvZ84TEhzEjl0HiTQHvmcvH2eh7906McKPZy4QoPcnMj6D
Xfmbl6VtIZaCXAEso7onbfz+d79ld24yLR19APQ+bSFjxz6+/f3vaKqvXbZ2dIFGfvPttxwq
2s/w0OCStLOQ5sZa9h3/mt/95hS1NQ/nXu94UkNI1EacTvc7Pv3phiZsfPPNN+jdU9g9s6/V
VN4jv3AfW7cXLNvJHxb+3mcmxzBGJrBn1w7GRweWrW0hloIUgGXkVUCtQHBgEE6nHYAZm5UA
/0BQNPj5LU1oaKF2NFot7Y01lFy5ybGjh5eknYVYZ2YICNSj8Q9C655t22WfpqK6mZz0eBw2
G55lGyPxoFLN/l84SKfD9aKZ6RkbA/29tD2q5HbNk2Vqe+HvXWsIYnygm6r7NQQbI5etbSGW
ghSAZeSHh0HLNM2tbZjDwhgbHSMyIoL2jlYmx/pxeZZmBG6hdmbG+nnQNsDvf/trApao0Cwk
IjKStpZ2+jubUYdGMDY6htPhJC0tmcYnLfT3dWN3L1cBUDEzOYnT7aF7xIKfx4FlYprIsBCM
ERvJ25rLhGVymdpe+Hvv7+4gLbeQo8eP09PVumxtC7EUZBroMnJYJ7l+o4wgcwy7d26l/tEj
NufkcP9uBf1j0xwoOkig/6efnBdqZ2NMBOV37wMQFZdE/pZNn9zOwjxU3LjGtFPh4KFDtDTW
k5mTgwrwOKd52jdBysboZWobhp53caeqloycPJKigml/PkF6UgxlN64z7fBy4ODBZSuAC33v
2ZsyuVlWyrTVxdadu4gKC1mWtoVYClIAhBBinZIhICGEWKekAAghxDolBUAIIdYpKQBCCLFO
SQEQQoh1SgqAWHG8HjeWiTfn709OTiJT1oRYOv8fPsdv3k/VxC8AAAAASUVORK5CYII=
</thumbnail>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdd3gUZ57o+29V51bOOYBA5JwN2BgwBhsMZuyZcZgc1rM7YWf3zNmz+9x7
nznnnnvv2d0zM7sz4zT2OGMcsMEYgzHYZEyOEiCEcs5StzpX1Xv/aFlIYGOBkaGl9/M8Duqu
8Kq6Vb+qt97391OEEAJJkiRp2FFvdQMkSZKkW0MGAEmSpGFKBgBJkqRhSgYASZKkYUoGAEmS
pGFKBgBJkqRhSgYASZKkYUoGAEmSpGFKBgBJkqRhSgYASZKkYUoGAEmSpGFKBgBJkqRhSgYA
SZKkYUoGAEmSpGFKBgBJkqRhSgYASZKkYUoGAEmSpGFKBgBJkqRhSgYASZKkYUoGAEmSpGFK
BgBJkqRhSgYASZKkYUoGAGlANE1DCHGrmzFguq4TCARudTMGLBgMomnarW7GgIVCIYLB4K1u
xnXxer0R8x02DAOfzzfo+5EBQBqShBAR88cOkdfeSBRpx/fraK950PcgDRk7jpVHzB+RYRjo
uoHFEhlfcU3TUFQVkxoZ12S6riMEmM2mW92UAQsEgths1lvdjAERInyXZbVaBnU/kfHXId0W
nt18DE2PjAAgSdKXi4zLjduMYRhcdSEsBIauR8wVsiRJ0rC7AxCGTkN1Gdu2fsjExd9gztis
q5ZxtdaxaeMmKhvasTpiWHzvSmZNGoUe9PL+hnUUlTVii07kW489Rm5aPEbAw6b16yiubsQW
ncTj3/seWUnRffeKu72R7R9u52J5NYZiYdad93DPgmns2LCeirbunsUEPr/OYz/+AWXH9nL4
eBFujw9nfDL3rX6Icfmp/drp6Wrm/Y0bKa1uxmyL4o67l3HnrAm01l7i/W07qG9sxWyPYsn9
a5g5fiQttRd5e9MOTD3dIskjp/DQsnl01BTzysZd2Kzh17MLJ3Df3QtRlUH5CCRJuk0MuwBQ
fGwn2/aVEGvx0tHlv3oBYbB7y3vEjZ7Nv/xwOp0NFTz34gZGFf6GioMfUa+n8Jt//gGlRz/h
7Y0f8OufPsqJvdtoUdP4b//yI0qP7uD1N9/j1z97DHOfE+iZg4eIz53MPzz0OCFPK889/Qzj
Jk5k0cq13KHpAHQ1lvHy27twmlUccSk8+sO/ISkuiqriT3n9nW388z9+j94eVyE4vGMrImUs
//T4j/G01vKXZ19h7MRCDu7cz7QFy/lOYR4t1ed4ZeMWxo36OS315cTnT+OBRZMBUE3hj7++
ooL0wincN39q7+vy3C9JQ9+w6wIaMW4uP//Fzxifl36NpQxi4+NRFYXo2DgsZgNQKL1Uxt13
L8JuMTN+xhxEWz2uoJ/iC7UsXb4Iq9nEuNmLsHZX0eLuP0Ru9r0rWTJ/OnarGbvdAT0P+2wO
JzExMcTERFN07ChTFi4myu5g6vSZpCTEoCoKqqpitls/56RsEBMXh0lVcMbEYrOBECbuf+xx
po0ficVswmF3EF5R0FrfTO6ILJzOKKKjo4lyOgCob28nKyMPp9PZ+7oiI4AkDXnD7g4gKibu
2gsoKnetWMUf/veTFB8aRUNFCQu/8SMS7YLubi8xceGuHZMtmowolWAwhCtoJsFh61ndSlJq
IlpQAz4bcaBgsVgQQtBYWcKbGzaSN3MFOQn23t36O+o4WtbJz9dMQFHACLp5f/MW6uobaOgI
8dO/+7v+0VpRmLPkPv74b/9B2ZnDdNSVMXHJQ6RHmQATwtApKz7OW5t3cOeqbxNlVXEHdc5/
soVz+82Y7DHcs3wFeemJhHweina9x7lPzZgc8Sy9dzl56Qk365BLknSbGnYB4HPp3Tz5uyfx
APOXPUR32X4K77iHu+dNprOxgq2f7GH2hFH9hxQKgaYZCFXFZO5/GHVNB8PLX/7wFJ0hnTlL
1nLXjFEUH9rBOztPsPyBbzBr8ug+V/SCA598yPg7lpDgCG9LMTuYPmse+W3NnDz8KXv3fMrq
uwp5/uW3CWqw8pHv0nZuL+mT57Ns0Ww8bTVs2XaAxplTSYsx88l76zh0sZOHv/NjRuemoSBY
tuZRFoU0DC1E6ZnDvPLqO/zTf/kJSx/8AXdqOoYW5PzJA7y5YSN//8T3sZqH3Q2iJA0rMgAA
qFH89Nf/AIAiQjy1z803H59PeoKTjPRUjhzaT0NrN1FRDuprm8gZn0Wwu4O6gJkYq5Ukm4+q
FhdJMXb0oJvW5i6iouP5wc9/Fd68yURtyTHe3XOWn/3qV6TEOvp153S31XDgQge//k24D14I
AYqJnLx8cvLymTRlPP/+33+Hb8Xd/N0vw9s0qQovbWvizpXfJSsjDjJSyTt+kKq6dhpbj3Cy
WeGXv3yCaEe460gIUFQz0dHhu45pc+ew45OzBAyB3WQm2m4HopgyfRZ7Tm1A0wVW+e2QpCFt
mP2JC+ory2nv9lHX3IFXu8RZp5/ckaOIiwp34QhDITfOwpZtO7h73hQ668upbBesSIzCOWMm
b37wLvG2+yk5tIOM0WNxWCzMnDuNNza+S/SaZZw78jGxo2cT7zRf7rIRBicPHyG7YAx1ZReo
A1SThdFjx+G0KBw7sJvCWQuJtoTDQtDrYvO7HzBq8mQS46OpvngKJT6NGJsJiym8jBCC3OQ4
tm//ELFoNp6WWoqru5mzysH7m44xevYKLl0oBsDiiKZwRA4b179EeuFMstPjOHdsP/bc0UQp
Pl7962sUTJtJRkosRYd2EZOcidUir/4laagz/fa3v/3trW7E16m6tJiK2kYsUQlEWQSdnd1k
ZOcSZQ/PuFMUlYIxY/G313GhpIwur8EDD64lPTGa+NRM4iwBTp4uwhyXzar7lmC3mEhIzSFW
9XLyVBGm+BweWnk3VlPfE2i4uyjg8+ByucL/dHvIyMrHYVFoae9m1owZOG3hNpjMFixKkIul
pVTX1hFUoli99gFiHZdnMSqKQu6o0eBt5fz5UjrcIZavWkNuagyhkMDn6erdl9unk5+fT3ZG
KuWlJVRW1WCLz+HBlYuxW2xkZyVTeuEcldW1RCXns3L5YhxXXP4bhsGGPecx5DQHSRoyFCFn
LkkDoGka3/rv78iZwJI0hAyzLiDpq1AVFVUxbnUzJOkGCZAzXPqRdwDSgGiahslkQomQCQKa
pqFpGna7/csXvg0EAgFUVcViGdzkXzdLKBRCCIHVGhnJ1QA8Hg9OpzMivsOGYeD3+3E6nYO6
H/mkT5IkaZiSAUCSJGmYkgFAkiRpmJIPgaUBe+J3WyJoFJAIT36LgP5eCM/rCDc1ctoLkXN8
AYQwUJTIueYNfydu7vEdlZXIPz++oPfniAoA7o4WfMJOamLMrW7KkBPye6lv7iA3J/MLv3St
Xd4ICgCSJF0pOa7/Q+WvNRwaeoiSopPs27uP8uqmz16lsb6RvqeVzrZGun39C2RrgW7Wv/IK
za5woeSOxipef/lFnn99M76gPmhtbmtqJKB9xaGPQtBQW4XLN4Ai5UKjqryMS5cuUVZWTlun
u/fYeFxt1Da2feGqIb+LfXuPcSOtVRWDjzev59Slpi9fWJKkIeFrCwA+VytP//5fOXCylEDA
y7uvPsnuU6WAzqZXXsHb5xx+cPcWShs9/dY/e2An9twZjM9LAaGz9c115E5ZyCNrlmK/jrQF
ur+V9e/vGvDyn364noqOAZy4+zBCHt7evI1Qb+AwOH/2FJ2ez6k/cNXKXl59cT1nioo5feo4
f33yP3hj816EELQ2VFFaXfeFq4YCXZwpLr+utn7GZIvm4YdWsfW9jXhDcqy/JA0HX1sXkKJY
uPfB71FQkI2iKBQmW9hSUsGiqfkoinJFz6eC0veeQAQ5fLyIZd//NQpQdamYiladfM1FdZ2J
woI8mmvKKSmrJiouhSmTx2M1KbQ01lBeVYcuFAoKx5Mca+PC2bNcuHCeUzkJWKPiGD96xJe0
XAUFNJ+b2jYv+dlpCCGoqaogJTMPm6pTcq6IdrefhJQMCgvyqLhQxPkL5xmRnY7N7mTsmNFM
mDgVu9OOHgpQVdeAVQ9SUdeAMyGdaZPG9IvEjth0Vq9ZjQnobqrgP9dtxxALSc0YgRITvjMS
RoiikydodfnIGTmWUT31DfSgn6KTR+l0Bxg5ZjxZaYkoQENVKSXltThik5k5fRImBarLS0nN
GUFdWQkhawJjRxaSH72Vkqompo3K+KofuSRJt7mv7Q7AHhPHqFE5KIC7vYn39xxjXOGXnXzD
vC3VtFuzyEuOAgQdHW34NZ3WxgZq6htpLC/i5Vc3Yo+Jo+zUbjZ9dBBD87F//366uv34Opt4
6qm/4AmGaGltJeB109DQQEu7e8Dt97XX8tGBw+EfhMGe3Ttodwc5uWsLOw6dxTA0jh38lJZO
D51tLfg9Hhrq62lsaccQgtP7PqampQvN28X6F57i/d1HQVXZu+1tzlZ29NuXEQzR5XLR3trM
/v0HSMvKQ1Ggo6aUg8fOghDseW89B89WERdrZ9Prf+VCTbhrqKHqHJdq2zD8nTz/7FM0u/w0
lp3ihTc/wBEbR/nJvbz94SEEcOCjjWx6ez0bt+3F7fUBCtOnFFJcUons6Zekoe9rfggsKDl1
iE1bdjD57lXcNW00EPrStTyuLhJS4wknwlSZOnMu+/ZdZNny5TjMJra99QJzlq9mxuR8JuSn
8vT6bWjL7mDlA2uoranDGwiQXnSC5qCVBfPncLQGVqxYcb1NR/Q5LX72f65uD0kpGYwZP5n5
CxaiKgppcxew/0IL9y5f0ZNTX/SsEJ6KnpQ3lh9+/1GsJgXR1YC70w1cLsDiddWy7rV1hHxu
2ts9fOO7dxK+RxIoQmAEOjlwrpWf/8PPcZoVbIEOjhWVkntHFtmjprNm1XJUBGqwi5NFlYjy
g9y5Yg3Tx2YxdWwWf/yPN/DfO5eA14M3Oo6f//xR7JZwscm41DS6L7Vc37GRJCkifW0BQAhB
8aHtbNp3nm//4AkKslJ6u300PURQN3D2ZNA0NI2+w+GEULiyk6ivQMhL8d6PqDjtQAgDZ1Qc
QU87Lz3/EvHZeSTFxuALaF+4/jVajSGu3R8+d8l97Nq1i7fXvUhAieU733uUpC+ZHa/0qbZu
UpWrRv5FJ+XzxM9+jGrotNVd4qnXNjP+n/72cquMEH5fJ++88RoI0EIBssZl9my8dy/Exifg
1g00f4Aje7ZRetQGCBIykwGwRsWweOW9vSf/8FrqNY+1JElDx9cWAPyuJjbvPsWPnvglGQl9
hyKZsTsE5ZWNTBudSdDbzqXSJiYvu5zDJTo2ho6WLgwB6uecm+Jj4hiVPpZVd89ExaCxuRVP
ew3Ej+KRb65GD3hpLj0eXlhRCfo9aIbApCgoGLS1tBKblNKba98wDBRFQfN1crG6m1l2M/gh
FNQQgBb04fOFa/76ghr3rFyLWYWdb/6FU5fqWTIhGT3gJ6gbWEw30MumKCiKgqqasFitQP9R
TqrZQXy0k6UrHyY3JYag30OHRwNcveOztUA3p08UM27FDDwt8RQkTeOBu6aiCIOWpiasCigK
mK5oX1dLM8742OtvsyRJEedrCwDuzjbaG5v461N/6L2+HDdnKWuXzuHupUt47fXnOZ2fR2NN
FVkT55GdYOtd15GSQ4ynltoOP7mJVyf3mrVgMX997hWevHgCJeDGnDSK76y6g1D9Jl58sQN3
ZweuDhcLAFNUKlk08OcnnyI6OY8ff2sJ659/mvt+9t8Y2bPPi6f38MmRMrrbm0kZN4u0KDO6
koy7qoi/PNdBt8tFl8cPCpw5vItj5xtJTY6lqsbFdxanoFidjE8x8eSTfyY2Po3vPPoQKCqq
0tMd1OcaWxA+0ffV3XKJf/v//hVhaKCYmXvXvVhVBaGEq3op1hhWLpnLS8/8J5mZ6XS0tTHj
7tXMHR1FXdlJnn6qA6+rjaS8yUwbmYI/4R5eePFVniw+jBHoJiZ1BI89sjbcjivG/J8uusjY
BWvlPYAkDQNfWzZQIQx0vX93iqKomEwqQghCAR9tHV04omKIjYlCveLEdOzjd7ngTebRlQtR
Ad0wUFU1fAITAt3Q8XR3o1psOO12FAW0oJ8uVzfRsfFYzGrv8rqu4Xa5sTmjcFgt6LqO2ifT
pa6FaO/owGSxEx8X09MWQTDgw+X2ER0bi8UU3h4IfB4P/pBGVFQMVkt4O8IwcLu7UC0Oohw2
hGGgqD1dXH3abhg6oKJ+dmsjBJre54pfUTD1LCsMAwMwqT3HLOjH5wtgd0Zh7alXrIU0giE/
QjHjdNh7j6Oua3S7PZgtVhwOO6qqhH/vz44h0N1Sxp/+uo1f/uPfEnXF0FpZD0CSIt/Y3GT+
9YmlvT9/jcNAVcxfUGRcURSsdicZGV+c+nTyvMUceeY5LtROYHxOEiaTqe8GMJnMxMbF91vH
YnOQnOK4alsmk5n4hMsPXa8s6m4yW0hJSb2ylVhtTpJtV7ZRwRkdw1WvqiqxcZf3ofRpb9+2
X3n1j6JgNn/+x6KoKqbexRSsNgdWW//fz2K1YLFenVLYZDITFx93xWuX960HvWx6ezOLHvjG
VSd/SZKGpgiqByDoam3Eh5P05LgvX1y6LiG/h8q6FgpG5l119wXhO4ANey5gRMjXRRgCw9Cv
Cu63K13Xe577REbwNQwDhEA1mb584dtEKBSKmHoLCNC0EOab3N6UOCf3zCro/TmCAoB0K8mC
MINLFoQZfLIgzNUi43JDkiRJuulkAJAkSRqmIqODVLot7DlVFTHPAAzDwND1m96HOlg0TUNV
1Yh5BqDrOiAwmSLnFBIMBLDabF++4O1ACIKh0KB3sUXOpyfdcn9697AcBipJQ0hkXG5IkiRJ
N50MAINECIPi4/t58j9/z//4H/83Tz2/jubOyzUOhBHio43refq1Lb2v7fxgI+5AeLJcZ0MZ
L7+2kd4MRiLE1nde59V3d9K3F6a14hx//vNTlFRffyGXhpKjbNlz8kZ+PUmShgAZAAaJ3l3P
7hOV3P/wd/iXf/knJmSY2brzSO/7VcVHKCpvpLXjciro+poyfJqB5nfz1ptvM2LCpMt9dMKg
tqGVquLD1HV9VqBGcOLIfjweF62dl1NbG7qOputXpHQW6LrebzZ2fGYBsycV9FtK13XkyGBJ
Gh7kM4BBYopK5yfffwSrxQQI4mIdGD1lzzR/J5s+2MfKbz7Ipo+OX7Xuwe0bUVInM29y/5Oz
IpxMH5vI2XOXyL5jArq/i6IqHzML8wAQhsaube9w+GwlFlWQMWYW3161GBMhdn/wPvtOngPV
TEJqKo999/sIVxOfXvCweslMgt4utrz7Fhdr2zFZo/jhz35CkiNCHphJknRDZAAYJIpqxqqG
M4d+uns7e4+V8v0nfoYwNHZueocR85ZTkNZ/RnPQ42Lbhpe51ODhN79+rDc76eWNCibOmsG7
HxxlyZzxNFeVEps9kmirr6erSGH0pDu4c/nDoPt54U+/p6J9LsGy/Zys9fGP/+2fcVh0/vA/
/180QyCCHlo7PQhhsO/DjXhjR/Ff/2kRrvY27Bb51ZCkoU52AQ0iv7uVl595muKGIE/8/Odk
JUZRf+k0J6vdzBmfS5erm5DPh8vtxhACk8VGXsEobCE3nV3ez91mVEIWsUonDe1uzp4uYuK0
KX1KACh42ut56flnefa5l6hr68Qf0mmpr2P23YtxWs2AypVxBaFT2erlzrmzUBWF+KRk7ObI
meIvSdKNkQFgsAidd199kbhRc/nR4w+RFBtO2tbV3k1qUiwfbdvC+9s+pr2pim2f7MOnCUxW
G+OnzWftsrm8uu5NXD01B/pSzFamTcjl+IlzVNa5GJOf2fuer7OWdz44xPK13+KHP/whs8aF
u4ZUk4rX0/MAWgiMq7r4FUyK0T8LqSRJQ568zx8k/rZKztb6eWhhLCXnzwEQl5TB+Ll3MX7u
XQDonkZ+9+onfGv1ff3WHTfrLmqrq3hr005+8Mh9vRlAhQCEQuH4qWz501/ImrKEeIe592Gv
YegoqoIe8HGx8hynSqrJXwqFk2fw3Cuvo7UvpKuhjEb/5X0ZgKKamDo6l/c3b2Llsrvoammk
YPJ04uyRk+dFkqTrZ/rtb3/721vdiKFICwQIaH7aW9toawv/Y5gd5GSk9FlKoAkT+dkZQDhn
f3pWHjazibyCUXQ21pKYmYfDGg4BugFZOZk4Y+KwoDN5+hwSYuwYhkZMYiopyWk46eLk6XN4
DSuTJ40jKzuP1NRMJowdRdAfYNT4idRdKGb6/Duxm8DmjCUjJYGU7HysIRdniktwBwWjR4/C
2qdamGEYbNhz/nPuHiRJilQyG+gw0FBxnuMl9RTkZVJ18STFTWZ+9ZNvYr6OpIiyIIwkDT2y
C2gYSEzLIrO5nbJLl3AmjOAnS6df18lfkqShSd4BSAOiaRookTNmQNd1NC2EzRY59QBMJtMX
VoO73URiPQCvx4MzKupWN2NAhBD4/T4cjsGtBxAZ3zbptmBSry4if9sSBkJVMZsiI2jppnBd
6EhprzDCdakjpb0AJpMaMd9hwzAwfQ3f38j59CRJkqSbSgYASZKkYUp2AUkD9ov/3IYeIaOA
BAKEQImQ5xZCCFBA4fbvnoCe40vktBfAEAZqhHwfQGAIMejtlQFAGrCGNrccBipJQ0ikhMOI
E/R2cvrUWbr9vRn9aaw4T0lFy6Dts6WxloqKCiqrqvH6Q/3ea6qtotunfcGakiQNRzIADJKi
I3t4bd06jp+r6H2ttvwCta3ua6z11Xy88TV2HTjCp/t28bv/9T/Z/Mmx3hq+xScP0uq5OreQ