-
Notifications
You must be signed in to change notification settings - Fork 0
/
Prims1.java
115 lines (102 loc) · 3.3 KB
/
Prims1.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
Prim's Algorithm
Send Feedback
Given an undirected, connected and weighted graph G(V, E) with V number of vertices (which are numbered from 0 to V-1) and E number of edges.
Find and print the Minimum Spanning Tree (MST) using Prim's algorithm.
For printing MST follow the steps -
1. In one line, print an edge which is part of MST in the format -
v1 v2 w
where, v1 and v2 are the vertices of the edge which is included in MST and whose weight is w. And v1 <= v2 i.e. print the smaller vertex first while printing an edge.
2. Print V-1 edges in above format in different lines.
Note : Order of different edges doesn't matter.
Input Format :
Line 1: Two Integers V and E (separated by space)
Next E lines : Three integers ei, ej and wi, denoting that there exists an edge between vertex ei and vertex ej with weight wi (separated by space)
Output Format :
MST
Constraints :
2 <= V, E <= 10^5
Sample Input 1 :
4 4
0 1 3
0 3 5
1 2 1
2 3 8
Sample Output 1 :
0 1 3
1 2 1
0 3 5*/import java.util.*;
class Node{
int id;
long w;
Node(int id,long w){
this.id = id;
this.w = w;
}
@Override
public String toString(){
return this.id+" "+this.w;
}
}
class NodeComp implements Comparator<Node>{
public int compare(Node o1,Node o2){
return o1.w == o2.w ? o1.id < o2.id ? -1 : 1 : o1.w < o2.w ? -1 : 1;
}
}
public class Prims1 {
static int parent[];
static long weight[];
static boolean visited[];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int V = sc.nextInt();
int E = sc.nextInt();
ArrayList<Node> arr[] = new ArrayList[V];
for(int i=0;i<V;i++) arr[i] = new ArrayList<>();
visited = new boolean[V];
parent = new int[V];
weight = new long[V];
Arrays.fill(weight, Long.MAX_VALUE);
Arrays.fill(parent,-1);
while(E--!=0){
int a = sc.nextInt(),b=sc.nextInt();
long w=sc.nextLong();
if(w <= 0 || a<0 || b<0) continue;
arr[a].add(new Node(b,w));
arr[b].add(new Node(a,w));
}
mst(arr);
for(int i = 1; i < V; i++){
int a = i, b = parent[i] ;
long c = weight[i];
System.out.print(a>b ? b+" "+a+" " : a + " " + b+" ");
System.out.println(c);
}
}
static void mst( ArrayList<Node> arr[]){
Node curNode;
int cur;
//PriorityQueue<Node> pq = new PriorityQueue<>(new NodeComp());
TreeSet<Node> pq = new TreeSet<>(new NodeComp());
pq.add(new Node(0,0));
while(!pq.isEmpty()){
curNode = pq.pollFirst();
cur = curNode.id;
visited[cur] = true;
for(int i=0;i<arr[cur].size();i++){
int v = arr[cur].get(i).id;
if(visited[v] == false && weight[v] > arr[cur].get(i).w){
Node temp = new Node(v,weight[v]);
if(pq.contains(temp)){
pq.remove(temp);
}
temp.w = arr[cur].get(i).w;
pq.add(temp);
weight[v] = temp.w;
parent[v] = cur;
}
}
//System.out.println(pq);
}
}
}