Skip to content

[ACM MM 2022] Modality-aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection

License

Notifications You must be signed in to change notification settings

JustinYuu/MACIL_SD

Repository files navigation

MACIL_SD

PWC

[ACM MM 2022] Modality-Aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection

Jiashuo Yu*, Jinyu Liu*, Ying Cheng, Rui Feng, Yuejie Zhang (* equal contribution)

Paper

Overview

Results

Our model achieves state-of-the-art results on the XD-Violence dataset while maintaining low parameter amounts.

Method Modality AP (%) Params
Ours (light) Audio & Visual 82.17 0.347M
Ours (full) Audio & Visual 83.40 0.678M

XD-Violence Dataset & Features

The audio and visual features of the XD-Violence dataset can be downloaded at this link. Note that in this paper, only the RGB and VGGish features are required. You can download the RGB.zip, RGBTest.zip, and vggish-features.zip and unzip them into the data/ folder.

Requirements

python==3.7.11  
torch==1.6.0  
cuda==10.1  
numpy==1.17.4

Note that the reported results are obtained by training on a single Tesla V100 GPU. We observe that different GPU types and torch/cuda versions can lead to slightly different results.

Training

python main.py --model_name=macil_sd

Testing

python infer.py --model_dir=macil_sd.pkl

Citation

If you find our work interesting and useful, please consider citing it.

@article{yu2022macil,
  title={Modality-Aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection},
  author={Jiashuo Yu, Jinyu Liu, Ying Cheng, Rui Feng, Yuejie Zhang},
  journal={arXiv preprint arXiv:2207.05500},
  year={2022}
}  

License

This project is released under the MIT License.

Acknowledgements

The codes are based on XDVioDet and RTFM. We sincerely thank them for their efforts. If you have further questions, please contact us at [email protected] and [email protected].

About

[ACM MM 2022] Modality-aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages