Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable AutoAugment and modernize DALI pipeline for ConvNets #1343

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions PyTorch/Classification/ConvNets/configs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -105,9 +105,9 @@ anchors:
mixup: 0.2
lr_schedule: cosine
momentum: 0.9
warmup: 16
warmup: 16
epochs: 400
data_backend: pytorch
data_backend: dali-gpu
augmentation: autoaugment
num_classes: 1000
interpolation: bicubic
Expand Down
31 changes: 16 additions & 15 deletions PyTorch/Classification/ConvNets/efficientnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ This model uses SGD optimizer for B0 models and RMSPROP optimizer alpha=0.853 e
* 0.0125 for 128 batch size for B0 models
* 4.09e-06 for 32 batch size for B4 models
scale the learning rate.
* Learning rate schedule:
* Learning rate schedule:
* cosine LR schedule for B0 models
* linear LR schedule for B4 models
* Weight decay (WD):
Expand Down Expand Up @@ -128,7 +128,7 @@ The following features are supported by this model:

| Feature | EfficientNet
|-----------------------|--------------------------
|[DALI](https://docs.nvidia.com/deeplearning/dali/release-notes/index.html) | Yes (without autoaugmentation)
|[DALI](https://docs.nvidia.com/deeplearning/dali/release-notes/index.html) | Yes
|[APEX AMP](https://nvidia.github.io/apex/amp.html) | Yes
|[QAT](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization) | Yes

Expand All @@ -143,10 +143,11 @@ We use [NVIDIA DALI](https://github.com/NVIDIA/DALI),
which speeds up data loading when CPU becomes a bottleneck.
DALI can use CPU or GPU, and outperforms the PyTorch native dataloader.

Run training with `--data-backends dali-gpu` or `--data-backends dali-cpu` to enable DALI.
For DGXA100 and DGX1 we recommend `--data-backends dali-cpu`.
Run training with `--data-backend dali-gpu` or `--data-backend dali-cpu` to enable DALI.
For DGXA100 and DGX1 we recommend `--data-backend dali-gpu`.

DALI currently does not support Autoaugmentation, so for best accuracy it has to be disabled.
DALI supports [AutoAugment](https://docs.nvidia.com/deeplearning/dali/user-guide/docs/auto_aug/auto_augment.html),
as well as other [Automatic Augmentation schemes](https://docs.nvidia.com/deeplearning/dali/user-guide/docs/auto_aug/auto_aug.html).


**[APEX](https://github.com/NVIDIA/apex)**
Expand Down Expand Up @@ -199,7 +200,7 @@ To enable mixed precision, you can:

#### Enabling TF32

TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs.
TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs.

TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy. It is more robust than FP16 for models which require high dynamic range for weights or activations.

Expand Down Expand Up @@ -319,9 +320,9 @@ For example:
You can download pre-trained weights from NGC:

```bash
wget --content-disposition -O
wget --content-disposition -O

unzip
unzip
```

To run inference on ImageNet, run:
Expand Down Expand Up @@ -441,12 +442,12 @@ URL for each model can be found in the following table:

| **Model** | **NGC weights URL** |
|:---------:|:-------------------:|
| efficientnet-b0 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b0_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-b0_210412.pth |
| efficientnet-b4 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b4_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-b4_210412.pth |
| efficientnet-widese-b0 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_widese_b0_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-widese-b0_210412.pth |
| efficientnet-widese-b4 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_widese_b4_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-widese-b4_210412.pth |
| efficientnet-quant-b0 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b0_pyt_qat_ckpt_fp32/versions/21.03.0/files/nvidia-efficientnet-quant-b0-130421.pth |
| efficientnet-quant-b4 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b4_pyt_qat_ckpt_fp32/versions/21.03.0/files/nvidia-efficientnet-quant-b4-130421.pth |
| efficientnet-b0 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b0_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-b0_210412.pth |
| efficientnet-b4 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b4_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-b4_210412.pth |
| efficientnet-widese-b0 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_widese_b0_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-widese-b0_210412.pth |
| efficientnet-widese-b4 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_widese_b4_pyt_amp/versions/20.12.0/files/nvidia_efficientnet-widese-b4_210412.pth |
| efficientnet-quant-b0 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b0_pyt_qat_ckpt_fp32/versions/21.03.0/files/nvidia-efficientnet-quant-b0-130421.pth |
| efficientnet-quant-b4 | https://api.ngc.nvidia.com/v2/models/nvidia/efficientnet_b4_pyt_qat_ckpt_fp32/versions/21.03.0/files/nvidia-efficientnet-quant-b4-130421.pth |

To run inference on ImageNet, run:

Expand All @@ -469,7 +470,7 @@ During the QAT process, evaluation is done in the same way as during standard tr

or to evaluate a created checkpoint with the flag `--evaluate`:

`python ./quant_main.py --arch efficientnet-quant-<version> --evaluate --epochs 1 --resume <path to checkpoint> -b <batch size> <path to imagenet>`
`python ./quant_main.py --arch efficientnet-quant-<version> --evaluate --epochs 1 --resume <path to checkpoint> -b <batch size> <path to imagenet>`

It also can run on multi-GPU in an identical way as the standard `main.py` script:

Expand Down
91 changes: 91 additions & 0 deletions PyTorch/Classification/ConvNets/image_classification/dali.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from nvidia.dali import fn
from nvidia.dali import types

from nvidia.dali.pipeline.experimental import pipeline_def

from nvidia.dali.auto_aug import auto_augment, trivial_augment


@pipeline_def(enable_conditionals=True)
def training_pipe(data_dir, interpolation, image_size, output_layout, automatic_augmentation,
dali_device="gpu", rank=0, world_size=1):
rng = fn.random.coin_flip(probability=0.5)

jpegs, labels = fn.readers.file(name="Reader", file_root=data_dir, shard_id=rank,
num_shards=world_size, random_shuffle=True, pad_last_batch=True)

if dali_device == "gpu":
decoder_device = "mixed"
resize_device = "gpu"
else:
decoder_device = "cpu"
resize_device = "cpu"

# This padding sets the size of the internal nvJPEG buffers to be able to handle all images
# from full-sized ImageNet without additional reallocations
images = fn.decoders.image_random_crop(jpegs, device=decoder_device, output_type=types.RGB,
device_memory_padding=211025920,
host_memory_padding=140544512,
random_aspect_ratio=[0.75, 4.0 / 3.0],
random_area=[0.08, 1.0])

images = fn.resize(images, device=resize_device, size=[image_size, image_size],
interp_type=interpolation, antialias=False)

# Make sure that from this point we are processing on GPU regardless of dali_device parameter
images = images.gpu()

images = fn.flip(images, horizontal=rng)

# Based on the specification, apply the automatic augmentation policy. Note, that from the point
# of Pipeline definition, this `if` statement relies on static scalar parameter, so it is
# evaluated exactly once during build - we either include automatic augmentations or not.
# We pass the shape of the image after the resize so the translate operations are done
# relative to the image size.
if automatic_augmentation is None:
output = images
elif automatic_augmentation == "autoaugment":
output = auto_augment.auto_augment_image_net(images, shape=[image_size, image_size])
else:
raise ValueError(f"Automatic augmentation: '{automatic_augmentation}'"
f" is not supported for DALI")


output = fn.crop_mirror_normalize(output, dtype=types.FLOAT, output_layout=output_layout,
crop=(image_size, image_size),
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])

return output, labels


@pipeline_def
def validation_pipe(data_dir, interpolation, image_size, image_crop, output_layout, rank=0,
world_size=1):
jpegs, label = fn.readers.file(name="Reader", file_root=data_dir, shard_id=rank,
num_shards=world_size, random_shuffle=False, pad_last_batch=True)

images = fn.decoders.image(jpegs, device="mixed", output_type=types.RGB)

images = fn.resize(images, resize_shorter=image_size, interp_type=interpolation,
antialias=False)

output = fn.crop_mirror_normalize(images, dtype=types.FLOAT, output_layout=output_layout,
crop=(image_crop, image_crop),
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
return output, label
Loading