Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Alternative method of submitting jobs to DF Runner #756

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
386 changes: 386 additions & 0 deletions axlearn/cloud/gcp/jobs/dataflow.alt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,386 @@
# Copyright © 2023 Apple Inc.

"""Runs Dataflow jobs locally or in GCP ** without needing to submit the job from a VM **
Users may encounter errors when they are trying to submit a job to the Dataflow runner using the primary dataflow.py script.


TO USE THIS MODULE, YOU MUST RENAME IT TO DATAFLOW.PY (and replace/rename the existing dataflow.py)


The flow is:
1. Builds the dataflow worker image.
2. Runs the dataflow job either on dataflow (if runner is 'DataflowRunner', the default) or locally
(if runner is 'DirectRunner').


Note: killing the script is not sufficient to stop a remote dataflow job; please use
`axlearn gcp dataflow stop` to do so. See below for examples.


Possible actions: [start|stop]


Start:
- If using DataflowRunner (default), builds the worker image, submits the job to Dataflow,
and monitors the status. To stop the job, use `axlearn gcp dataflow stop`.
- If using DirectRunner, builds the worker and runs the job locally. Exiting the script
terminates the job.


Stop:
- Attempts to stop any remote Dataflow job(s) matching job name. This is only useful if the
job was started with DataflowRunner; for DirectRunner, exiting the script stops the job.


Example:


axlearn gcp dataflow start \
--name=$USER-dataflow \
--bundler_spec=extras=dataflow \
--bundler_spec=dockerfile=Dockerfile \
--bundler_spec=target=dataflow \
--bundler_spec=allow_dirty=True \
--bundler_spec=image=${DOCKER_IMAGE} \
--bundler_spec=repo=${DOCKER_REPO} \
--dataflow_spec=runner=DataflowRunner \
--dataflow_spec=region=us-central2 \
--dataflow_spec=machine_type=n2-standard-8 \
-- "'
python3 -m apache_beam.examples.wordcount \
--input=gs://dataflow-samples/shakespeare/kinglear.txt \
--output=gs://STORAGE_BUCKET/wordcount'"


# Stop the VM (if running on VM).
axlearn gcp vm stop --name=$USER-dataflow

# Stop the job (if running on dataflow).
axlearn gcp dataflow stop --name=$USER-dataflow

Reference [1]:
https://cloud.google.com/dataflow/docs/quickstarts/create-pipeline-python#run-the-pipeline-on-the-dataflow-service
"""
# pylint: disable=protected-access

import platform
import re
import shlex
import signal
import subprocess
from collections.abc import Sequence
from typing import Any, cast

from absl import app, flags, logging
from google.auth.credentials import Credentials
from googleapiclient import discovery, errors

from axlearn.cloud.common.bundler import BaseDockerBundler, get_bundler_config
from axlearn.cloud.common.docker import registry_from_repo
from axlearn.cloud.common.utils import (
canonicalize_to_list,
canonicalize_to_string,
configure_logging,
generate_job_name,
handle_popen,
parse_action,
parse_kv_flags,
send_signal,
)
from axlearn.cloud.gcp import bundler
from axlearn.cloud.gcp.bundler import ArtifactRegistryBundler
from axlearn.cloud.gcp.config import gcp_settings
from axlearn.cloud.gcp.job import GCPJob
from axlearn.cloud.gcp.utils import catch_auth, get_credentials
from axlearn.common.config import REQUIRED, Required, config_class

FLAGS = flags.FLAGS


# TODO(markblee): Use CPURunner.
class DataflowJob(GCPJob):
"""Launches a dataflow job from local."""

@config_class
class Config(GCPJob.Config):
# Worker VM type.
vm_type: Required[str] = REQUIRED
# Setup command. This is used to prepare the local machine for running `cfg.command`,
# including installing docker (if not already present) and building the worker image.
# `cfg.command` will then be run within the worker image, to ensure a consistent build +
# execute environment.
setup_command: Required[str] = REQUIRED

@classmethod
def define_flags(cls, fv: flags.FlagValues):
super().define_flags(fv)
common_kwargs = dict(flag_values=fv, allow_override=True)
flags.DEFINE_string("vm_type", "n2-standard-2", "Worker VM type.", **common_kwargs)
flags.DEFINE_multi_string(
"dataflow_spec",
[],
"Bundler spec provided as key=value.",
**common_kwargs,
)

@classmethod
def from_flags(cls, fv: flags.FlagValues, **kwargs):
cfg = super().from_flags(fv, **kwargs)
cfg.name = cfg.name or generate_job_name()
cfg.max_tries = cfg.max_tries or 1
cfg.retry_interval = cfg.retry_interval or 60

# Construct bundler.
cfg.bundler = get_bundler_config(
bundler_type=fv.bundler_type or ArtifactRegistryBundler.TYPE,
spec=fv.bundler_spec,
fv=fv,
)
if not issubclass(cfg.bundler.klass, BaseDockerBundler):
raise NotImplementedError("Expected a DockerBundler.")
cfg.bundler.image = cfg.bundler.image or cfg.name

# Construct bundle command.
docker_setup_cmd = (
# Install a docker version with buildkit support.
# Buildkit is required for actual multi-stage '--target' (without it, docker will
# attempt to build all stages up to the target).
# https://docs.docker.com/engine/install/ubuntu/#install-using-the-convenience-script
# We use apt-get update and wait for apt lock to release (often held on first boot).
"if [[ ! -x $(which docker) ]]; then "
"sudo apt-get -o DPkg::Lock::Timeout=60 update; "
"curl -fsSL https://get.docker.com -o get-docker.sh && sudo sh get-docker.sh;"
"fi"
)
docker_auth_cmd = (
f"gcloud auth configure-docker {registry_from_repo(cfg.bundler.repo)} --quiet"
)
bundle_cmd = " ".join(
[
f"python3 -m {bundler.__name__} --name={cfg.name}",
*_docker_bundler_to_flags(cfg.bundler, fv=fv),
]
)

# Construct dataflow command.
dataflow_spec, multi_flags = cls._dataflow_spec_from_flags(cfg, fv)
dataflow_flags = " ".join(
sorted(flags.flag_dict_to_args(dataflow_spec, multi_flags=multi_flags))
)
cfg.setup_command = f"{docker_setup_cmd} && {docker_auth_cmd} && {bundle_cmd}"
cfg.command = f"{cfg.command} {dataflow_flags}"
logging.info(f"from_flags, full df command: {cfg.command}")
return cfg

@classmethod
def _dataflow_spec_from_flags(
cls, cfg: Config, fv: flags.FlagValues
) -> tuple[dict[str, Any], list[str]]:
"""Returns a flag dict and a list of flags considered as 'multi-flags'."""
# Construct dataflow args, providing some defaults.
service_account = cfg.service_account or gcp_settings("service_account_email", fv=fv)
dataflow_spec = {
"job_name": cfg.name,
"project": cfg.project,
"region": cfg.zone.rsplit("-", 1)[0],
"worker_machine_type": cfg.vm_type,
"sdk_container_image": f"{cfg.bundler.repo}/{cfg.bundler.image}:{cfg.name}",
"temp_location": f"gs://{gcp_settings('ttl_bucket', fv=fv)}/tmp/{cfg.name}/",
"service_account_email": service_account,
"dataflow_service_options": ["enable_secure_boot", "enable_google_cloud_heap_sampling"],
"experiments": ["use_network_tags=allow-internet-egress", "use_runner_v2"],
"no_use_public_ips": None,
"runner": "DataflowRunner",
}
dataflow_spec.update(parse_kv_flags(fv.dataflow_spec, delimiter="="))

# From https://cloud.google.com/dataflow/docs/reference/pipeline-options#basic_options,
# these seem to be the only multi-flags. Users can still provide comma-separated strings for
# other multi-flags, if any.
multi_flags = ["dataflow_service_options", "experiments"]
for multi_flag in multi_flags:
dataflow_spec[multi_flag] = canonicalize_to_list(dataflow_spec[multi_flag])

# Attempt to infer network settings, if not specified.
if "network" not in dataflow_spec and "subnetwork" not in dataflow_spec:
# Following https://cloud.google.com/dataflow/docs/guides/specifying-networks,
# only --subnetwork is required, and we use the "complete URL" format.
subnetwork = gcp_settings("subnetwork", fv=fv)
subnetwork_pat = r"projects/.+/regions/.+/subnetworks/.+"
if not re.match(subnetwork_pat, subnetwork):
raise ValueError(
f"Expected subnetwork with format {subnetwork_pat}, got {subnetwork}"
)
dataflow_spec["subnetwork"] = f"https://www.googleapis.com/compute/v1/{subnetwork}"

return dataflow_spec, multi_flags

def _delete(self):
cfg: DataflowJob.Config = self.config
# Attempt to stop on dataflow. Note that this is not foolproof, e.g., the command may start
# multiple jobs.
_stop_dataflow_job(project=cfg.project, zone=cfg.zone, job_name=cfg.name)

def _execute(self):
cfg: DataflowJob.Config = self.config
# Run the setup command locally, but the launch command via docker.
# This is to ensure that the launch environment matches the worker environment.
processor = platform.processor().lower()
if "arm" in processor:
# Disable running from docker on Mac M1 chip due to qemu core dump bug.
# https://github.com/docker/for-mac/issues/5342.
logging.info(
(
"%s processor detected. "
"Skipping docker launch and running from local environment instead."
),
processor,
)
cmd = cfg.command
else:
cmd = (
"docker run --rm "
"--mount type=bind,src=$HOME/.config/gcloud,dst=/root/.config/gcloud "
"--entrypoint /bin/bash "
f"{self._bundler.id(cfg.name)} -c '\"'\"'{cfg.command}'\"'\"'"
)
cmd = f"{cfg.setup_command} && {cmd}"
cmd = f"bash -c '{cmd}'"
logging.info("Executing in subprocess: %s", cmd)
with subprocess.Popen(cmd, shell=True, text=True) as proc:
# Attempt to cleanup the process when exiting.
def sig_handler(sig: int, _):
send_signal(proc, sig=sig)

# SIGTERM for kill, SIGINT for ctrl+c, and SIGHUP for screen quit.
for sig in [signal.SIGTERM, signal.SIGINT, signal.SIGHUP]:
signal.signal(sig, sig_handler)

handle_popen(proc)


def _docker_bundler_to_flags(cfg: BaseDockerBundler.Config, *, fv: flags.FlagValues) -> list[str]:
"""Converts docker bundler config to a string of flags."""
# TODO(markblee): Add a config to_spec() method to mirror from_spec().
specs = []
for name, value in cfg.items():
if value and isinstance(value, (int, str, bool, Sequence)):
specs.append(f"{name}={canonicalize_to_string(value)}")
elif value and isinstance(value, dict):
specs.extend([f"{k}={v}" for k, v in value.items()])
else:
logging.info("Skipping %s (%s) when converting bundler config to flags.", name, value)

# For sanity, reconstruct the bundler from the spec, and warn if mismatch.
re_cfg = cast(BaseDockerBundler, cfg.klass).from_spec(specs, fv=fv)
for re_name, re_value in re_cfg.items():
re_value = canonicalize_to_string(re_value)
orig_value = canonicalize_to_string(getattr(cfg, re_name, None))
if re_value != orig_value:
logging.warning(
"Reconstructed config %s has value %s which is different from original: %s",
re_name,
re_value,
orig_value,
)
return [f"--bundler_type={cfg.klass.TYPE}"] + [f"--bundler_spec={spec}" for spec in specs]


def _dataflow_resource(credentials: Credentials):
# cache_discovery=False to avoid:
# https://github.com/googleapis/google-api-python-client/issues/299
dataflow = discovery.build("dataflow", "v1b3", credentials=credentials, cache_discovery=False)
return dataflow.projects().locations().jobs()


def _get_dataflow_jobs(*, project: str, zone: str, job_name: str) -> list[dict[str, Any]]:
"""Attempts to retrieve a dataflow job.

If dataflow job is not found, returns None.
If job name matches multiple jobs, returns all of them.

Reference:
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/projects.jobs#Job
"""
# Need to use list endpoint to filter by name.
# Note that job name is user-specified, whereas job ID is generated by dataflow.
resource = _dataflow_resource(get_credentials())
resp = resource.list(projectId=project, location=zone, name=job_name).execute()
return resp.get("jobs", [])


def _stop_dataflow_job(*, project: str, zone: str, job_name: str):
"""Attempts to cancel a dataflow job.

Reference:
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/projects.jobs#jobstate
https://googleapis.github.io/google-api-python-client/docs/dyn/dataflow_v1b3.projects.locations.jobs.html#update
"""
jobs = _get_dataflow_jobs(project=project, zone=zone, job_name=job_name)
for job in jobs:
try:
# Terminal states cannot be modified. See references above.
if job.get("currentState") in {
"JOB_STATE_DONE",
"JOB_STATE_FAILED",
"JOB_STATE_STOPPED",
"JOB_STATE_CANCELLED",
"JOB_STATE_UPDATED",
"JOB_STATE_DRAINED",
}:
logging.info(
"Dataflow job %s (id %s) is already terminal with state %s.",
job["name"],
job["id"],
job["currentState"],
)
continue
logging.info(
"Dataflow job %s (id %s) has state %s, setting it to JOB_STATE_CANCELLED...",
job["name"],
job["id"],
job["currentState"],
)
resource = _dataflow_resource(get_credentials())
resource.update(
projectId=project,
location=zone,
jobId=job["id"],
body={"requestedState": "JOB_STATE_CANCELLED"},
).execute()
except (ValueError, errors.HttpError) as e:
logging.warning(
"Failed to cancel dataflow job: %s. Consider cancelling from the console.", e
)


@catch_auth
def main(argv: Sequence[str], *, flag_values: flags.FlagValues = FLAGS):
action = parse_action(argv, options=["start", "stop"])

if action == "start":
command = " ".join(argv[2:])
if not command:
raise app.UsageError("Command is required.")

# Ensure that command is supplied to `from_flags`.
cfg = DataflowJob.from_flags(flag_values, command=command)
if not cfg.bundler.repo or not cfg.bundler.image:
raise app.UsageError(
"Worker bundler repo and image are required. "
f"Instead, got repo={cfg.bundler.repo} image={cfg.bundler.image}."
)

job = cfg.instantiate()
job.execute()
elif action == "stop":
job = DataflowJob.from_flags(flag_values, command="").instantiate()
job._delete()
else:
raise ValueError(f"Unsupported action: {action}")


if __name__ == "__main__":
DataflowJob.define_flags(FLAGS)
configure_logging(logging.INFO)
app.run(main)
2 changes: 2 additions & 0 deletions axlearn/cloud/gcp/jobs/dataflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

"""Runs Dataflow jobs locally or in GCP.

If you're having issues when submitting jobs to the DataflowRunner, use dataflow.alt.py instead

The flow is:
1. Builds the dataflow worker image.
2. Runs the dataflow job either on dataflow (if runner is 'DataflowRunner', the default) or locally
Expand Down