Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Enabling automation of experiments running v2.0 #469

Open
wants to merge 24 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
8726ab8
Revising to enable automation of experiments running v1.0
xisen-w Nov 4, 2024
b44bef5
Any new updates
xisen-w Nov 15, 2024
c100876
Revising to enable automation of experiments running v1.0
xisen-w Nov 4, 2024
18370d4
Any new updates
xisen-w Nov 15, 2024
21a99d2
Add template
you-n-g Nov 15, 2024
86ae0b2
Stoping tracking additional env
xisen-w Nov 20, 2024
f94dbff
Merge branch 'automated-evaluation' of https://github.com/microsoft/R…
xisen-w Nov 20, 2024
66ffd6d
Uploading relevant envs
xisen-w Nov 20, 2024
0ef80a5
Adding tests
xisen-w Nov 20, 2024
907d980
Updating
xisen-w Nov 20, 2024
51388d1
Updated collect.py to extract result from trace
xisen-w Nov 23, 2024
af6220e
Update .gitignore to remove the unecessary ones
xisen-w Nov 23, 2024
54c3c6d
"Remove unnecessary files"
xisen-w Nov 23, 2024
78708e4
Merge branch 'automated-evaluation' of https://github.com/microsoft/R…
xisen-w Nov 25, 2024
3f131f3
Merge branch 'main' into automated-evaluation
xisen-w Nov 25, 2024
38bb9e6
Updated to enable automatic collection of experiment result information
xisen-w Nov 25, 2024
10b0053
Updating the env files & Upading test_system file
xisen-w Nov 25, 2024
238f492
Updated relevant env for better testing
xisen-w Nov 25, 2024
68ca63a
Updated README.md
xisen-w Nov 25, 2024
8b18fad
reverting gitignore back
xisen-w Nov 25, 2024
2395dc5
Updates
xisen-w Dec 3, 2024
b7cc98e
README update
xisen-w Dec 3, 2024
0b5a09d
Updates on env README
xisen-w Dec 3, 2024
24cd0c2
Updating collect.py
xisen-w Dec 3, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions scripts/exp/ablation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Introduction

This document outlines the environment configurations for the ablation studies. Each environment file corresponds to a specific experimental case, with some cases currently unavailable for implementation.

| Name | .env | Description | Available? |
|-----------|--------------|-------------------------------------------|------------|
| basic | basic.env | Standard case of RDAgent | Yes |
| minicase | minicase.env | Enables minicase and DS-Agent | Yes |
| pro | pro.env | Standard case with vector RAG | Yes |
| max | max.env | Enables all features | No |

## Notes

- Each `.env` file represents a distinct case for experimentation. Future implementations will include the unavailable cases.
- There is potential for integrating `CHAT_MODEL` in the future to facilitate comparisons between different models in experiments.

## Common Environment Variables

| Variable Name | Description |
|-----------------------------------|-----------------------------------------------------------------------------|
| `MINICASE` | Set to `True` to enable the previous implementation of DS-Agent. |
| `IF_USING_MLE_DATA` | Set to `True` to use MLE benchmark data; requires `KG_LOCAL_DATA_PATH=/data/userdata/share/mle_kaggle`. |
| `KG_IF_USING_VECTOR_RAG` | Set to `True` to enable vector RAG. |
| `KG_IF_USING_GRAPH_RAG` | Set to `False` to disable graph RAG. |
| `KG_IF_ACTION_CHOOSING_BASED_ON_UCB` | Set to `True` to enable action selection based on UCB. |

## Future Work

- Implement additional environment configurations as needed.
- Explore the integration of different models for comparative analysis in ablation studies.








3 changes: 3 additions & 0 deletions scripts/exp/ablation/env/basic.env
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
KG_IF_USING_VECTOR_RAG=False
KG_IF_USING_GRAPH_RAG=False
KG_IF_ACTION_CHOOSING_BASED_ON_UCB=False
4 changes: 4 additions & 0 deletions scripts/exp/ablation/env/max.env
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
KG_IF_USING_VECTOR_RAG=False
KG_IF_USING_GRAPH_RAG=True
KG_IF_ACTION_CHOOSING_BASED_ON_UCB=True
#KG_KNOWLEDGE_BASE_PATH= TODO: Specify Your Knowledge Base Path
5 changes: 5 additions & 0 deletions scripts/exp/ablation/env/mini-case.env
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
KG_IF_USING_VECTOR_RAG=True
KG_IF_USING_GRAPH_RAG=False
KG_IF_ACTION_CHOOSING_BASED_ON_UCB=True
# MIGHT BE LEGACY

4 changes: 4 additions & 0 deletions scripts/exp/ablation/env/pro.env
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
KG_IF_USING_VECTOR_RAG=True
KG_IF_USING_GRAPH_RAG=False
KG_IF_ACTION_CHOOSING_BASED_ON_UCB=True
# MIGHT BE LEGACY
125 changes: 125 additions & 0 deletions scripts/exp/tools/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
# Tools Directory

This directory provides scripts to run experiments with different environment configurations, collect results, and demonstrate usage through an example script.

## Directory Structure

```
scripts/exp/tools/
├── run_envs.sh # Script for running experiments
├── collect.py # Results collection and summary
├── test_system.sh # Usage script for rdagent kaggle loop
└── README.md # This documentation
```

## Tools Overview

1. **run_envs.sh**: Executes experiments with different environment configurations in parallel.
2. **collect.py**: Collects and summarizes experiment results into a single file.
3. **test_system.sh**: Demonstrates how to use the above tools together for experiment execution and result collection (for rdagent kaggle loop).

## Getting Started

### Prerequisites

Place your `.env` files in the desired directory for environment configurations.

## Usage

### 1. Running Experiments with Different Environments

The `run_envs.sh` script allows running a command with multiple environment configurations in parallel.

**Command Syntax:**

```bash
./run_envs.sh -d <dir_to_.envfiles> -j <number_of_parallel_processes> -- <command>
```

**Example Usage:**

- Basic example:

```bash
./run_envs.sh -d env_files -j 1 -- echo "Hello"
```

- Practical example (running the kaggle loop file):

```bash
dotenv run -- ./run_envs.sh -d RD-Agent/scripts/exp/ablation/env -j 1 -- python RD-Agent/rdagent/app/kaggle/loop.py
```

**Explanation:**

| Option | Description |
|-------------|--------------------------------------------------------------|
| `-d` | Specifies the directory containing `.env` files. |
| `-j` | Number of parallel processes to run (e.g., 1 for sequential execution). |
| `--` | Separates script options from the command to execute. |
| `<command>`| The command to execute with the environment variables loaded.|

### 2. Collecting Results

The `collect.py` script processes logs and generates a summary JSON file.

**Command Syntax:**

```bash
python collect.py --log_path <path_to_logs> --output_name <summary_filename>
```

**Example Usage:**

Collect results from logs:

```bash
python collect.py --log_path logs --output_name summary.json
```

**Explanation:**

| Option | Description |
|-----------------|--------------------------------------------------------------|
| `--log_path` | Required. Specifies the directory containing experiment logs.|
| `--output_name`| Optional. The name of the output summary file (default: summary.json). |

### 3. Example Workflow (for rdagent kaggle loop)

Use the `test_system.sh` script to demonstrate a complete workflow.

**Steps:**

1. Run the test system:

```bash
./scripts/exp/tools/test_system.sh
```

This will:
1. Load environment configurations from `.env` files.
2. Execute experiments using the configurations.

2. Find your logs in the `logs` directory.

3. Use the `collect.py` script to summarize results:

```bash
python collect.py --log_path logs --output_name summary.json
```

## Create Your Own Workflow

- Create the ablation environments under a specified folder.
- Revise the `test_system.sh` template to adjust the path and relevant commands for execution.
- Run `test_system.sh` to execute the environments through different configurations.
- Keep track of your log path and use `collect.py` to collect the results at scale.

## Notes

- Scale parallel processes as needed using the `-j` parameter.
- Avoid errors by ensuring `.env` files are correctly formatted.
- Modify `test_system.sh` to meet your project's specific needs.
- Add other metrics of interest in `collect.py` to summarize automatically.

For further assistance, refer to the comments within the scripts or reach out to the development team.
92 changes: 92 additions & 0 deletions scripts/exp/tools/collect.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
import os
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Will the env name (e.g. basic, max, pro) displayed in the collected results?

import json
import argparse
from pathlib import Path
from datetime import datetime
from rdagent.log.storage import FileStorage
from rdagent.scenarios.kaggle.kaggle_crawler import (
leaderboard_scores,
)
import pandas as pd

def collect_results(log_path) -> list[dict]:
summary = []
log_storage = FileStorage(Path(log_path))
evaluation_metric_direction = None
# Extract score from trace using the same approach as UI
for msg in log_storage.iter_msg():
if "scenario" in msg.tag:
competition_name = msg.content.competition # Find the competition name
leaderboard = leaderboard_scores(competition_name)
evaluation_metric_direction = float(leaderboard[0]) > float(leaderboard[-1])

if "runner result" in msg.tag:
if msg.content.result is not None:
score = msg.content.result
summary.append({
"competition_name": competition_name,
"score": score,
"workspace": msg.content.experiment_workspace.workspace_path,
"evaluation_metric_direction": evaluation_metric_direction
})
return summary

def generate_summary(results, output_path):
summary = {
"configs": {}, #TODO: add config?
"best_result": {"competition_name": None, "score": None},
"timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
#Add other metrics that we want to track in the future (eg. is there successive increase?)
}
for result in results:
# Update best result
if result["evaluation_metric_direction"]:
if (result["score"] is not None and
(summary["best_result"]["score"] is None or
(result["score"].iloc[0] > summary["best_result"]["score"]))):
summary["best_result"].update({
"score": result["score"].iloc[0] if isinstance(result["score"], pd.Series) else result["score"],
"competition_name": result["competition_name"]
})
else:
if (result["score"] is not None and
(summary["best_result"]["score"] is None or
(result["score"].iloc[0] < summary["best_result"]["score"]))):
summary["best_result"].update({
"score": result["score"].iloc[0] if isinstance(result["score"], pd.Series) else result["score"],
"competition_name": result["competition_name"]
})

# Convert Series to scalar or list if necessary
for key, value in summary.items():
if isinstance(value, pd.Series):
summary[key] = value.tolist() # Convert Series to list
elif isinstance(value, dict):
for sub_key, sub_value in value.items():
if isinstance(sub_value, pd.Series):
value[sub_key] = sub_value.tolist() # Convert Series to list

with open(output_path, "w") as f:
json.dump(summary, f, indent=4)

def parse_args():
parser = argparse.ArgumentParser(description='Collect and summarize experiment results')
parser.add_argument('--log_path', type=str, required=True,
help='Path to the log directory containing experiment results')
parser.add_argument('--output_name', type=str, default='summary.json',
help='Name of the output summary file (default: summary.json)')
return parser.parse_args()

if __name__ == "__main__":
args = parse_args()
log_path = Path(args.log_path)

# Verify the log path exists
if not log_path.exists():
raise FileNotFoundError(f"Log path does not exist: {log_path}")

results = collect_results(log_path)
output_path = log_path / args.output_name
generate_summary(results, output_path)
print("Summary generated successfully at", output_path)

51 changes: 51 additions & 0 deletions scripts/exp/tools/run_envs.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
#!/bin/sh
cat << "EOF" > /dev/null
Given a directory with *.env files. Run each one.

usage for example:

1) directly run command without extra shared envs
./run_envs.sh -d <dir_to_*.envfiles> -j <number of parallel process> -- <command>

2) load shared envs `.env` before running command with different envs.
dotenv run -- ./run_envs.sh -d <dir_to_*.envfiles> -j <number of parallel process> -- <command>

EOF

# Function to display usage
usage() {
echo "Usage: $0 -d <dir_to_*.envfiles> -j <number of parallel process> -- <command>"
exit 1
}

# Parse command line arguments
while getopts "d:j:" opt; do
case $opt in
d) DIR=$OPTARG ;;
j) JOBS=$OPTARG ;;
*) usage ;;
esac
done

# Shift to get the command
shift $((OPTIND -1))

# Check if directory and jobs are set
if [ -z "$DIR" ] || [ -z "$JOBS" ] || [ $# -eq 0 ]; then
usage
fi

COMMAND="$@"

# Before running commands
echo "Running experiments with following env files:"
find "$DIR" -name "*.env" -exec echo "{}" \;

# Export and run each .env file in parallel
find "$DIR" -name "*.env" | xargs -n 1 -P "$JOBS" -I {} sh -c "
set -a
. {}
set +a
$COMMAND
"

19 changes: 19 additions & 0 deletions scripts/exp/tools/test_system.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
#!/bin/bash

# Test directory setup
TEST_DIR="test_run"
mkdir -p "$TEST_DIR/results"
mkdir -p "$TEST_DIR/logs"

# Define relative paths inside the folder RDAgent
ENV_DIR="scripts/exp/ablation/env" # The folder of environments to apply
PYTHON_SCRIPT="rdagent/app/kaggle/loop.py" # The main file for running

# Run the experiment
echo "Running experiments..."
dotenv run -- ./scripts/exp/tools/run_envs.sh -d "$ENV_DIR" -j 4 -- \
python "$PYTHON_SCRIPT" \
--competition "spaceship-titanic" \

# Cleanup (optional - comment out if you want to keep results)
# rm -rf "$TEST_DIR"
Loading