-
Notifications
You must be signed in to change notification settings - Fork 38
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Thank you for taking the time to review this PR. Please handle it in the way you see fit. I would appreciate any suggestions to help me further improve my coding skills. https://github.com/user-attachments/assets/4289dee8-894b-42b6-bcad-1b0653a6bde4
- Loading branch information
Showing
4 changed files
with
201 additions
and
16 deletions.
There are no files selected for viewing
Submodule Qwen2.5-7B-Instruct-v8-k65536-65536-woft
added at
ce2453
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,4 +3,6 @@ torch | |
transformers>=4.45 | ||
safetensors | ||
psutil | ||
accelerate | ||
accelerate | ||
gradio | ||
plotly==5.9.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
import re | ||
import subprocess | ||
from collections import deque | ||
|
||
import gradio as gr | ||
import plotly.graph_objs as go | ||
|
||
# Queues for storing historical data (saving the last 20 GPU utilization and memory usage values) | ||
gpu_util_history = deque(maxlen=20) | ||
mem_usage_history = deque(maxlen=20) | ||
|
||
|
||
def get_nvidia_smi_info(): | ||
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, text=True) | ||
return result.stdout | ||
|
||
|
||
def parse_nvidia_smi_output(output): | ||
gpu_info = {} | ||
utilization = re.search(r'(\d+)%\s+Default', output) | ||
mem_used = re.search(r'(\d+)MiB / (\d+)MiB', output) | ||
temp = re.search(r'(\d+)C', output) | ||
power = re.search(r'(\d+)\s*/\s*(\d+)\s*W', output) | ||
gpu_clock = re.search(r'(\d+)MHz\s+MEM\s+(\d+)MHz', output) | ||
|
||
if utilization: | ||
gpu_info['gpu_util'] = int(utilization.group(1)) | ||
if mem_used: | ||
gpu_info['mem_used'] = int(mem_used.group(1)) | ||
gpu_info['mem_total'] = int(mem_used.group(2)) | ||
gpu_info['mem_percent'] = gpu_info['mem_used'] / gpu_info['mem_total'] * 100 | ||
if temp: | ||
gpu_info['temp'] = int(temp.group(1)) | ||
if power: | ||
gpu_info['power_used'] = int(power.group(1)) | ||
gpu_info['power_max'] = int(power.group(2)) | ||
if gpu_clock: | ||
gpu_info['gpu_clock'] = int(gpu_clock.group(1)) | ||
gpu_info['mem_clock'] = int(gpu_clock.group(2)) | ||
|
||
return gpu_info | ||
|
||
|
||
def update_charts(chart_height: int = 200) -> go.Figure: | ||
""" | ||
Update the GPU utilization and memory usage charts. | ||
Args: | ||
chart_height (int, optional): used to set the height of the chart. Defaults to 200. | ||
Returns: | ||
plotly.graph_objs.Figure: The updated figure containing the GPU and memory usage charts. | ||
""" | ||
# obtain GPU information | ||
output = get_nvidia_smi_info() | ||
gpu_info = parse_nvidia_smi_output(output) | ||
|
||
# records the latest GPU utilization and memory usage values | ||
gpu_util = round(gpu_info.get('gpu_util', 0), 1) | ||
mem_percent = round(gpu_info.get('mem_percent', 0), 1) | ||
gpu_util_history.append(gpu_util) | ||
mem_usage_history.append(mem_percent) | ||
|
||
# create GPU utilization line chart | ||
gpu_trace = go.Scatter(y=list(gpu_util_history), | ||
mode='lines+markers+text', | ||
name='GPU Utilization (%)', | ||
text=list(gpu_util_history), | ||
textposition='top center') | ||
|
||
# create memory usage line chart | ||
mem_trace = go.Scatter(y=list(mem_usage_history), | ||
mode='lines+markers+text', | ||
name='Memory Usage (%)', | ||
text=list(mem_usage_history), | ||
textposition='top center') | ||
|
||
# set the layout of the chart | ||
layout = go.Layout( | ||
# title="Real-time GPU Stats", | ||
xaxis=dict(title=None, showticklabels=False, ticks=''), | ||
yaxis=dict( | ||
title='Percentage (%)', | ||
range=[-5, 110] # adjust the range of the y-axis | ||
), | ||
height=chart_height, # set the height of the chart | ||
margin=dict(l=10, r=10, t=0, b=0) # set the margin of the chart | ||
) | ||
|
||
fig = go.Figure(data=[gpu_trace, mem_trace], layout=layout) | ||
return fig | ||
|
||
|
||
def mem_bar(used: float, total: float) -> str: | ||
""" | ||
Generates a memory usage bar. | ||
Args: | ||
used (float): The amount of memory used in GiB. | ||
total (float): The total amount of memory available in GiB. | ||
Returns: | ||
str: A string representing the memory usage bar in HTML format. | ||
""" | ||
bar_length = 50 | ||
used_bars = int(bar_length * used / total) | ||
bar = '|' * used_bars + ' ' * (bar_length - used_bars) | ||
return f"<span style='color: green;'>MEM[{bar}{used:.3f}Gi/{total:.3f}Gi]</span>" | ||
|
||
|
||
def refresh_gpu_data(): | ||
""" | ||
Refreshes and returns the current GPU data in an HTML formatted string. | ||
Returns: | ||
str: An HTML formatted string containing the GPU information, including | ||
GPU clock speed, memory clock speed, temperature, power usage, | ||
GPU utilization, and memory usage. | ||
""" | ||
|
||
output = get_nvidia_smi_info() | ||
gpu_info = parse_nvidia_smi_output(output) | ||
|
||
gpu_clock = gpu_info.get('gpu_clock', 'N/A') | ||
mem_clock = gpu_info.get('mem_clock', 'N/A') | ||
temp = gpu_info.get('temp', 'N/A') | ||
power_used = gpu_info.get('power_used', 'N/A') | ||
power_max = gpu_info.get('power_max', 'N/A') | ||
gpu_util = gpu_info.get('gpu_util', 0) | ||
mem_used = gpu_info.get('mem_used', 0) / 1024 # MiB to GiB | ||
mem_total = gpu_info.get('mem_total', 0) / 1024 # MiB to GiB | ||
|
||
gpu_info_display = (f"<div style='font-family: monospace;'>" | ||
f"<b style='color: yellow;'>Device 0</b> " | ||
f"[<span style='color: cyan;'>NVIDIA A100 80GB PCIe</span>] " | ||
f"PCIe GEN 4@16x RX: <b>0.000 KiB/s</b> TX: <b>0.000 KiB/s</b><br>" | ||
f"GPU <b>{gpu_clock}MHz</b> MEM <b>{mem_clock}MHz</b> " | ||
f"TEMP <b style='color: orange;'>{temp}°C</b> FAN <b>N/A%</b> " | ||
f"POW <b style='color: red;'>{power_used} / {power_max} W</b><br>" | ||
f"GPU[<b>{gpu_util}%</b>] {mem_bar(mem_used, mem_total)}" | ||
f"</div>") | ||
|
||
return gpu_info_display | ||
|
||
|
||
def initialize_history(): | ||
""" | ||
Initializes the GPU utilization and memory usage history. | ||
""" | ||
for _ in range(20): | ||
output = get_nvidia_smi_info() | ||
gpu_info = parse_nvidia_smi_output(output) | ||
gpu_util_history.append(round(gpu_info.get('gpu_util', 0), 1)) | ||
mem_usage_history.append(round(gpu_info.get('mem_percent', 0), 1)) | ||
|
||
|
||
if __name__ == "__main__": | ||
# set the update interval of the GPU information | ||
time_interval = 0.01 | ||
# create the GPU information display and chart | ||
with gr.Blocks() as demo: | ||
# Flickering issue exists, temporarily commented out | ||
gpu_info_display = gr.HTML(refresh_gpu_data, every=time_interval, elem_id="gpu_info") | ||
initialize_history() | ||
gpu_chart = gr.Plot(update_charts, every=time_interval) | ||
# avoid the up and down movement of the GPU information | ||
demo.css = """ | ||
#gpu_info { | ||
height: 100px; | ||
overflow: hidden; | ||
} | ||
""" | ||
demo.launch() |