Skip to content

shashidhar2609/shaml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

evaluate-ML-models

Install Project on Local Machine

Create Database

mysql -u root -p
show databases;
create database `DB_NAME`;

Clone from the repository

I normally use pipenv in dev, but in this project I used pip

git clone https://github.com/lifelonglearner127/evaluate-ML-models.git
cd evaluate-ML-models
virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

Config Local Setting

Create your instance project root directory and write down following configration settings in instance/config.py

SECRET_KEY = 'p9Bv<3Eid9%$i01'
SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://DB_USER:USER_PASS@localhost/DB_NAME'

After that please continue

export FLASK_APP=run.py
export FLASK_CONFIG=development
flask db migrate
flask db upgrade
flask run

Deploying heroku

Add Procfile file

web: gunicorn run:app
release: flask db upgrade

Create heroku app

heroku login
heroku create evaluate-ml-models

Create heroku database

Config heroku vars

heroku config:set FLASK_APP=run.py
heroku config:set FLASK_CONFIG='production'
heroku config:set SECRET_KEY='p9Bv<3Eid9%$i01'
heroku config:set SQLALCHEMY_DATABASE_URI='postgres://itvutnkxmmgweh:ccbf42b1d41ca00cdde3c6ce2c44722aa98a4ceb2efbcde82aa9efb577e7ca69@ec2-75-101-131-79.compute-1.amazonaws.com:5432/dfbbkdlds8422h'
git push heroku master

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published